Lucy D’Agostino McGowan
12/6/2016
Just tried watching Saturday Night Live - unwatchable! Totally biased, not funny and the Baldwin impersonation just can't get any worse. Sad
— Donald J. Trump (@realDonaldTrump) December 4, 2016
Just tried watching Saturday Night Live - unwatchable! Totally biased, not funny and the Baldwin impersonation just can't get any worse. Sad
— Donald J. Trump (@realDonaldTrump) December 4, 2016
#ThankYouTour2016
— Donald J. Trump (@realDonaldTrump) December 5, 2016
12/6- North Carolinahttps://t.co/79AHq3NC0v
12/8- Iowahttps://t.co/1IuRTVwMSx
12/9- Michiganhttps://t.co/2UTwAg5V87 pic.twitter.com/QKGpE52Ukg
#ThankYouTour2016
— Donald J. Trump (@realDonaldTrump) December 5, 2016
12/6- North Carolinahttps://t.co/79AHq3NC0v
12/8- Iowahttps://t.co/1IuRTVwMSx
12/9- Michiganhttps://t.co/2UTwAg5V87 pic.twitter.com/QKGpE52Ukg
New post: Analysis of Trump tweets confirms he writes only the angrier Android half https://t.co/HRr4yj30hx #rstats pic.twitter.com/cmwdNeYSE7
— David Robinson (@drob) August 9, 2016
New post: Analysis of Trump tweets confirms he writes only the angrier Android half https://t.co/HRr4yj30hx #rstats pic.twitter.com/cmwdNeYSE7
— David Robinson (@drob) August 9, 2016
New post: Analysis of Trump tweets confirms he writes only the angrier Android half https://t.co/HRr4yj30hx #rstats pic.twitter.com/cmwdNeYSE7
— David Robinson (@drob) August 9, 2016
| word | sentiment |
|---|---|
| abandon | negative |
| abandoned | negative |
| abandonment | negative |
| abba | positive |
| abduction | negative |
| aberrant | negative |
| aberration | negative |
| abhor | negative |
| abhorrent | negative |
| ability | positive |
\(y_i \sim\textrm{Poisson} (\mu_i)\)
\(\mu_i \sim \exp(\beta_0+\color{lightgreen}\beta_\color{lightgreen}1\times \textrm{source}+\beta_2\times \textrm{time} + \beta_3 \times \textrm{hashtag} + \textrm{offset})\)
\(\beta_j\sim \textrm{Normal}(a, b)\)
\(y_k\sim\textrm{Bernoulli}(p_k)\)
\(\textrm{logit}(p_k) = \alpha_i+\beta_0+\color{lightgreen}\beta_\color{lightgreen}1\times\textrm{source}+\beta_2\times \textrm{time}+\beta_3\times\textrm{hashtag}\)
\(\alpha_i\sim\textrm{Normal}(0,\tau)\)
\(\tau\sim\textrm{Gamma}(0.001,0.001)\)
Flat: Normal(0,1e6)
Skeptical: Normal(-2,1)
Optimistic: Normal(2,1)
| mean | sd | 2.5% | 25% | 50% | 75% | 97.5% | Rhat | n.eff | |
|---|---|---|---|---|---|---|---|---|---|
| beta 1 (source: Android) | 0.1789621 | 0.0813651 | 1.95485e-02 | 0.123875 | 0.1782 | 0.2337 | 0.3382025 | 1.000989 | 15000 |
| deviance | 1695.2528000 | 2.8215757 | 1.69200e+03 | 1693.000000 | 1695.0000 | 1697.0000 | 1702.0000000 | 1.001589 | 2900 |
| mean | sd | 2.5% | 25% | 50% | 75% | 97.5% | Rhat | n.eff | |
|---|---|---|---|---|---|---|---|---|---|
| beta 1 (source: Android) | 0.3805776 | 0.1349299 | 0.1166 | 0.2904 | 0.3812 | 0.471625 | 0.64283 | 1.001756 | 2300 |
| deviance | 2092.3568667 | 45.0809723 | 2002.9750 | 2062.0000 | 2094.0000 | 2124.000000 | 2178.00000 | 1.008192 | 310 |
This shows the shink factor as the number of iterations increases. A factor of 1 means the the between and within chain variances are equal, factors greater than 1 indicate that there are differences between chains.
This shows the shink factor as the number of iterations increases. A factor of 1 means the the between and within chain variances are equal, factors greater than 1 indicate that there are differences between chains.
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | -1.0605161 | 0.1060808 | -9.997249 | 0.0000000 |
| Android | 0.1784824 | 0.0812016 | 2.198016 | 0.0279480 |
| time | 0.0110638 | 0.0057287 | 1.931281 | 0.0534483 |
| hashtag | -0.1254822 | 0.1170869 | -1.071702 | 0.2838541 |
A tweet sent from an Android increases the expectation of the number of negative words in the tweet by a factor of 1.2, with a 95% Credible interval of (1.02, 1.4) as compared to one sent from an iPhone, adjusting for the time of day the tweet was sent, whether the tweet included a hashtag, and the number of classified words in the tweet.