Analysis of traffic Accidents in Newyork
library(rgdal)
library(UScensus2010)
library(UScensus2010county)
UScensus2010county: US Census 2010 County Level Shapefiles and Additional
Demographic Data
Version 1.00 created on 2011-11-06
copyright (c) 2011, Zack W. Almquist, University of California-Irvine
Type help(package="UScensus2010county") to get started.
For citation information, type citation("UScensus2010county").
shp <- data("new_york.county10")
shp <- new_york.county10
df_1 <- shp@data
Study Area
library(tmap)
qtm(shp,fill = "P0010001")

P0010001
tm_fill
#666666
solid
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FEE494
#FFF8C4
#FFF8C4
#FFF8C4
#FB9225
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#B74202
#FFF8C4
#FFF8C4
#FFF8C4
#FEC24D
#FEE494
#FFF8C4
#E3650E
#FFF8C4
#FFF8C4
#FFF8C4
#FEE494
#FFF8C4
#FFF8C4
#FFF8C4
#FEC24D
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FEC24D
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
#FFF8C4
0 to 500,000
500,000 to 1,000,000
1,000,000 to 1,500,000
1,500,000 to 2,000,000
2,000,000 to 2,500,000
2,500,000 to 3,000,000
#FFF8C4
#FEE494
#FEC24D
#FB9225
#E3650E
#B74202
#666666
P0010001
P0010001
#FFFFFF
YlOrBr
RdYlGn
Set3
black
#000000
plain
#000000
WGS84
#FFFFFF
right
vertical
left
bottom
to
Less than
or more
#000000
left
top
#000000
#000000
#CCCCCC
bottom
right
bottom
left
bottom
bg.color
aes.color
aes.palette
attr.color
saturation
sepia.intensity
fontfamily
frame.double.line
compass.type
space.color
title
grey85
grey40
grey60
black
red
black
grey75
CartoDB.Positron
OpenStreetMap
Esri.WorldTopoMap
#FFFFFF
left
top
topright
Missing
shp
km
segment
midpoint
dt <- readOGR(dsn = ".",layer = "deatht")
OGR data source with driver: ESRI Shapefile
Source: ".", layer: "deatht"
with 2385 features
It has 12 fields
Data
library(datasets)
dt_1 <- dt@data
df2 <- dt_1[, c(6,7,8,9,10,11,12)]
library(DT)
datatable(df2, options = list(pageLength = 5))
m <- lm(injury ~ ., data = df2)
m
Call:
lm(formula = injury ~ ., data = df2)
Coefficients:
(Intercept) numfatal speeding conszone age
3.291200 0.089382 0.333959 -0.020767 0.001359
alcres sex
-0.025312 0.267218
summary(m)
Call:
lm(formula = injury ~ ., data = df2)
Residuals:
Min 1Q Median 3Q Max
-4.9715 -1.2287 -0.0115 0.6792 7.7590
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.2911997 0.0922655 35.671 < 2e-16 ***
numfatal 0.0893815 0.0536148 1.667 0.0956 .
speeding 0.3339590 0.0687210 4.860 1.25e-06 ***
conszone -0.0207673 0.1086711 -0.191 0.8485
age 0.0013592 0.0002616 5.195 2.22e-07 ***
alcres -0.0253118 0.0006962 -36.355 < 2e-16 ***
sex 0.2672177 0.0381353 7.007 3.16e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.473 on 2378 degrees of freedom
Multiple R-squared: 0.3938, Adjusted R-squared: 0.3923
F-statistic: 257.5 on 6 and 2378 DF, p-value: < 2.2e-16
Variable Inflation Factor
library(graphics)
boxplot(injury~sex, data = df2)

library(car)
Warning in sample.int(.Machine$integer.max - 1L, 1L): '.Random.seed' is not
an integer vector but of type 'NULL', so ignored
vif(m)
numfatal speeding conszone age alcres sex
1.098672 1.043408 1.045882 2.106586 1.029146 2.125943
Regression Equation
b1 <- lm(formula = injury ~ alcres + age + speeding + sex, data = df2)
summary(b1)
Call:
lm(formula = injury ~ alcres + age + speeding + sex, data = df2)
Residuals:
Min 1Q Median 3Q Max
-4.9986 -1.2310 -0.0261 0.6723 7.7583
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.3913843 0.0701987 48.311 < 2e-16 ***
alcres -0.0254391 0.0006920 -36.763 < 2e-16 ***
age 0.0013441 0.0002615 5.140 2.98e-07 ***
speeding 0.3559688 0.0674589 5.277 1.43e-07 ***
sex 0.2696557 0.0381108 7.076 1.95e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.473 on 2380 degrees of freedom
Multiple R-squared: 0.3931, Adjusted R-squared: 0.3921
F-statistic: 385.4 on 4 and 2380 DF, p-value: < 2.2e-16
f_crit <- qf(0.95,df1 = 4,df2 = 2380)
f_crit
[1] 2.375667
print("Null Hypotheisis:There is no relationship between the independent and dependent variable")
[1] "Null Hypotheisis:There is no relationship between the independent and dependent variable"
print("Alternative Hypotheisis:There is relationship between the independent and dependent variable")
[1] "Alternative Hypotheisis:There is relationship between the independent and dependent variable"
Data visualization
library(leaflet)
df <- read.csv("data.csv",header=T)
leaflet(data = df) %>%
addTiles() %>%
addMarkers(~POINT_X, ~POINT_Y,popup= "Accident",clusterOptions = markerClusterOptions())
leaflet(df,width = "100%",height = 800) %>%
addTiles(group = "OSM (default)") %>%
addProviderTiles(provider = "Esri.WorldStreetMap",group = "World StreetMap") %>%
addProviderTiles(provider = "Esri.WorldImagery",group = "World Imagery") %>%
addProviderTiles(provider = "NASAGIBS.ViirsEarthAtNight2012",group = "Nighttime Imagery") %>%
addProviderTiles(provider = "NASAGIBS.ModisTerraBands367CR",group = "Hybrid Imagery") %>%
addTiles() %>% fitBounds(147,90,-101,-90) %>%
addMarkers(~POINT_X,~POINT_Y,popup = "Accident",clusterOptions = markerClusterOptions()) %>%
addLayersControl(
baseGroups = c("OSM (default)","World StreetMap", "Nighttime Imagery","World Imagery","Hybrid Imagery"),
options = layersControlOptions(collapsed = FALSE)
)
LS0tDQp0aXRsZTogIiINCmF1dGhvcjogIkZ1YWQgT2xvd28iDQpvdXRwdXQ6IA0KICBodG1sX25vdGVib29rOg0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KLS0tDQojIyBBbmFseXNpcyBvZiB0cmFmZmljIEFjY2lkZW50cyBpbiBOZXd5b3JrIA0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpsaWJyYXJ5KHJnZGFsKQ0KbGlicmFyeShVU2NlbnN1czIwMTApDQpsaWJyYXJ5KFVTY2Vuc3VzMjAxMGNvdW50eSkNCnNocCA8LSBkYXRhKCJuZXdfeW9yay5jb3VudHkxMCIpDQpzaHAgPC0gbmV3X3lvcmsuY291bnR5MTANCmRmXzEgPC0gc2hwQGRhdGENCmBgYA0KDQojIyBTdHVkeSBBcmVhDQpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmxpYnJhcnkodG1hcCkNCnF0bShzaHAsZmlsbCA9ICJQMDAxMDAwMSIpDQpgYGANCg0KDQpgYGB7cn0NCmR0IDwtIHJlYWRPR1IoZHNuID0gIi4iLGxheWVyID0gImRlYXRodCIpDQpgYGANCg0KIyMgRGF0YQ0KYGBge3J9DQpsaWJyYXJ5KGRhdGFzZXRzKQ0KZHRfMSA8LSBkdEBkYXRhDQpkZjIgPC0gZHRfMVssIGMoNiw3LDgsOSwxMCwxMSwxMildDQpsaWJyYXJ5KERUKQ0KZGF0YXRhYmxlKGRmMiwgb3B0aW9ucyA9IGxpc3QocGFnZUxlbmd0aCA9IDUpKQ0KbSA8LSBsbShpbmp1cnkgfiAuLCBkYXRhID0gZGYyKQ0KbQ0Kc3VtbWFyeShtKQ0KYGBgDQoNCiMjIFZhcmlhYmxlIEluZmxhdGlvbiBGYWN0b3INCmBgYHtyfQ0KbGlicmFyeShncmFwaGljcykNCmJveHBsb3QoaW5qdXJ5fnNleCwgZGF0YSA9IGRmMikNCmxpYnJhcnkoY2FyKQ0KdmlmKG0pDQpgYGANCg0KIyMgUmVncmVzc2lvbiBFcXVhdGlvbg0KYGBge3J9DQpiMSA8LSBsbShmb3JtdWxhID0gaW5qdXJ5IH4gIGFsY3JlcyArIGFnZSArIHNwZWVkaW5nICsgc2V4LCBkYXRhID0gZGYyKQ0Kc3VtbWFyeShiMSkNCg0KZl9jcml0IDwtIHFmKDAuOTUsZGYxID0gNCxkZjIgPSAyMzgwKQ0KZl9jcml0DQpwcmludCgiTnVsbCBIeXBvdGhlaXNpczpUaGVyZSBpcyBubyByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgaW5kZXBlbmRlbnQgYW5kIGRlcGVuZGVudCB2YXJpYWJsZSIpDQpwcmludCgiQWx0ZXJuYXRpdmUgSHlwb3RoZWlzaXM6VGhlcmUgaXMgcmVsYXRpb25zaGlwIGJldHdlZW4gdGhlIGluZGVwZW5kZW50IGFuZCBkZXBlbmRlbnQgdmFyaWFibGUiKQ0KYGBgDQoNCiMjIERhdGEgdmlzdWFsaXphdGlvbg0KYGBge3IsIHdhcm5pbmc9RkFMU0V9DQpsaWJyYXJ5KGxlYWZsZXQpDQpkZiA8LSByZWFkLmNzdigiZGF0YS5jc3YiLGhlYWRlcj1UKQ0KbGVhZmxldChkYXRhID0gZGYpICU+JSANCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkTWFya2Vycyh+UE9JTlRfWCwgflBPSU5UX1kscG9wdXA9ICJBY2NpZGVudCIsY2x1c3Rlck9wdGlvbnMgPSBtYXJrZXJDbHVzdGVyT3B0aW9ucygpKQ0KDQpgYGANCg0KDQpgYGB7ciwgd2FybmluZz1GQUxTRX0NCmxlYWZsZXQoZGYsd2lkdGggPSAiMTAwJSIsaGVpZ2h0ID0gODAwKSAlPiUgDQogIGFkZFRpbGVzKGdyb3VwID0gIk9TTSAoZGVmYXVsdCkiKSAlPiUNCiAgYWRkUHJvdmlkZXJUaWxlcyhwcm92aWRlciA9ICJFc3JpLldvcmxkU3RyZWV0TWFwIixncm91cCA9ICJXb3JsZCBTdHJlZXRNYXAiKSAlPiUNCiAgYWRkUHJvdmlkZXJUaWxlcyhwcm92aWRlciA9ICJFc3JpLldvcmxkSW1hZ2VyeSIsZ3JvdXAgPSAiV29ybGQgSW1hZ2VyeSIpICU+JQ0KICBhZGRQcm92aWRlclRpbGVzKHByb3ZpZGVyID0gIk5BU0FHSUJTLlZpaXJzRWFydGhBdE5pZ2h0MjAxMiIsZ3JvdXAgPSAiTmlnaHR0aW1lIEltYWdlcnkiKSAlPiUNCiAgICBhZGRQcm92aWRlclRpbGVzKHByb3ZpZGVyID0gIk5BU0FHSUJTLk1vZGlzVGVycmFCYW5kczM2N0NSIixncm91cCA9ICJIeWJyaWQgSW1hZ2VyeSIpICU+JQ0KICAgICAgYWRkVGlsZXMoKSAlPiUgZml0Qm91bmRzKDE0Nyw5MCwtMTAxLC05MCkgJT4lIA0KICAgICAgIGFkZE1hcmtlcnMoflBPSU5UX1gsflBPSU5UX1kscG9wdXAgPSAiQWNjaWRlbnQiLGNsdXN0ZXJPcHRpb25zID0gbWFya2VyQ2x1c3Rlck9wdGlvbnMoKSkgICU+JQ0KICAgICAgYWRkTGF5ZXJzQ29udHJvbCgNCiAgICBiYXNlR3JvdXBzID0gYygiT1NNIChkZWZhdWx0KSIsIldvcmxkIFN0cmVldE1hcCIsICJOaWdodHRpbWUgSW1hZ2VyeSIsIldvcmxkIEltYWdlcnkiLCJIeWJyaWQgSW1hZ2VyeSIpLA0KICAgIG9wdGlvbnMgPSBsYXllcnNDb250cm9sT3B0aW9ucyhjb2xsYXBzZWQgPSBGQUxTRSkNCiAgKQ0KYGBgDQoNCg==