With this exercise VAs with GMAB and GMDB riders are priced by means of the static amd mixed approaches. The caracteristics of the contracts are the following:
We are going to progressively increase the barrier with the formula (1 + k) * G where k varies from 0 to 1 with step 0.1
With regards to the simulation:
In the mixed approach, the regression is done only when the the account value is below the barrier
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 107.6979 105.5666 103.8501 102.3045 101.1632 100.1059 99.28232
## [2,] 107.7991 105.0391 103.0704 101.8834 101.5592 101.2460 101.08661
## [,8] [,9] [,10] [,11]
## [1,] 98.52409 97.92471 97.4583 97.08107
## [2,] 101.21941 101.10002 101.1034 101.10770
In the graph the dashed line corresponds to the constant fee case:
## static 94.98361
## mixed 101.19
With model 3:
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 107.7354 105.6436 103.7885 102.3380 101.0007 100.1527 99.25351
## [2,] 107.8050 105.1122 103.0798 101.6538 101.5144 101.1466 101.13712
## [,8] [,9] [,10] [,11]
## [1,] 98.4787 97.99344 97.47482 97.12994
## [2,] 101.1312 101.05847 101.14171 101.16640
In the graph the dashed line corresponds to the constant fee case:
## static 95.0865
## mixed 101.1506
With model 2:
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 108.4823 106.9421 105.6307 104.4379 103.2962 102.5979 101.7247
## [2,] 108.3043 106.5160 105.3132 104.7083 103.9883 103.7708 103.7000
## [,8] [,9] [,10] [,11]
## [1,] 101.1649 100.6926 100.0508 99.62314
## [2,] 103.2591 103.4065 103.2751 103.32564
In the graph the dashed line corresponds to the constant fee case:
## static 96.56004
## mixed 103.2631
With model 1:
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 108.5250 107.0765 105.6672 104.5924 103.6225 102.7393 101.9616
## [2,] 108.6778 106.7090 105.1807 104.5213 103.6889 103.4193 103.2005
## [,8] [,9] [,10] [,11]
## [1,] 101.3924 100.9002 100.4529 99.83847
## [2,] 103.1891 103.0931 103.0303 102.90388
In the graph the dashed line corresponds to the constant fee case:
## static 96.58692
## mixed 102.5686