North Carolina births

In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.

Exploratory analysis

Load the nc data set into our workspace.

load("more/nc.RData")

We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.

variable description
fage father’s age in years.
mage mother’s age in years.
mature maturity status of mother.
weeks length of pregnancy in weeks.
premie whether the birth was classified as premature (premie) or full-term.
visits number of hospital visits during pregnancy.
marital whether mother is married or not married at birth.
gained weight gained by mother during pregnancy in pounds.
weight weight of the baby at birth in pounds.
lowbirthweight whether baby was classified as low birthweight (low) or not (not low).
gender gender of the baby, female or male.
habit status of the mother as a nonsmoker or a smoker.
whitemom whether mom is white or not white.
  1. What are the cases in this data set? How many cases are there in our sample?

As a first step in the analysis, we should consider summaries of the data. This can be done using the summary command:

summary(nc)
##       fage            mage            mature        weeks      
##  Min.   :14.00   Min.   :13   mature mom :133   Min.   :20.00  
##  1st Qu.:25.00   1st Qu.:22   younger mom:867   1st Qu.:37.00  
##  Median :30.00   Median :27                     Median :39.00  
##  Mean   :30.26   Mean   :27                     Mean   :38.33  
##  3rd Qu.:35.00   3rd Qu.:32                     3rd Qu.:40.00  
##  Max.   :55.00   Max.   :50                     Max.   :45.00  
##  NA's   :171                                    NA's   :2      
##        premie        visits            marital        gained     
##  full term:846   Min.   : 0.0   married    :386   Min.   : 0.00  
##  premie   :152   1st Qu.:10.0   not married:613   1st Qu.:20.00  
##  NA's     :  2   Median :12.0   NA's       :  1   Median :30.00  
##                  Mean   :12.1                     Mean   :30.33  
##                  3rd Qu.:15.0                     3rd Qu.:38.00  
##                  Max.   :30.0                     Max.   :85.00  
##                  NA's   :9                        NA's   :27     
##      weight       lowbirthweight    gender          habit    
##  Min.   : 1.000   low    :111    female:503   nonsmoker:873  
##  1st Qu.: 6.380   not low:889    male  :497   smoker   :126  
##  Median : 7.310                               NA's     :  1  
##  Mean   : 7.101                                              
##  3rd Qu.: 8.060                                              
##  Max.   :11.750                                              
##                                                              
##       whitemom  
##  not white:284  
##  white    :714  
##  NA's     :  2  
##                 
##                 
##                 
## 

As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a graph.

Consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.

  1. Make a side-by-side boxplot of habit and weight. What does the plot highlight about the relationship between these two variables?
boxplot(weight~habit,data=nc, main="Relation Between Mother's Habit and Baby's Weight", 
    ylab="Baby's Weight", xlab="Mother Smoker/Non-Smoker")

The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight variable into the habit groups, then take the mean of each using the mean function.

by(nc$weight, nc$habit, mean)
## nc$habit: nonsmoker
## [1] 7.144273
## -------------------------------------------------------- 
## nc$habit: smoker
## [1] 6.82873

There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test .

Inference

  1. Check if the conditions necessary for inference are satisfied. Note that you will need to obtain sample sizes to check the conditions. You can compute the group size using the same by command above but replacing mean with length.
by(nc$weight, nc$habit, length)
## nc$habit: nonsmoker
## [1] 873
## -------------------------------------------------------- 
## nc$habit: smoker
## [1] 126
  1. Write the hypotheses for testing if the average weights of babies born to smoking and non-smoking mothers are different.

Hypotheses : H0: µ{nonsmoker} - µ{smoker} = 0, There is no difference in the mean of the birth weight between mothers who smoke and those who don’t smoke HA: µ{nonsmoker} - µ{smoker} != 0, There is a difference in the mean of the birth weight between mothers who smoke and those who don’t smoke

Next, we introduce a new function, inference, that we will use for conducting hypothesis tests and constructing confidence intervals.

inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0, 
          alternative = "twosided", method = "theoretical")
## Warning: package 'BHH2' was built under R version 3.3.2
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
## 
## H0: mu_nonsmoker - mu_smoker = 0 
## HA: mu_nonsmoker - mu_smoker != 0 
## Standard error = 0.134 
## Test statistic: Z =  2.359 
## p-value =  0.0184

Let’s pause for a moment to go through the arguments of this custom function. The first argument is y, which is the response variable that we are interested in: nc$weight. The second argument is the explanatory variable, x, which is the variable that splits the data into two groups, smokers and non-smokers: nc$habit. The third argument, est, is the parameter we’re interested in: "mean" (other options are "median", or "proportion".) Next we decide on the type of inference we want: a hypothesis test ("ht") or a confidence interval ("ci"). When performing a hypothesis test, we also need to supply the null value, which in this case is 0, since the null hypothesis sets the two population means equal to each other. The alternative hypothesis can be "less", "greater", or "twosided". Lastly, the method of inference can be "theoretical" or "simulation" based.

  1. Change the type argument to "ci" to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.

By default the function reports an interval for (\(\mu_{nonsmoker} - \mu_{smoker}\)) . We can easily change this order by using the order argument:

inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical", 
          order = c("smoker","nonsmoker"))
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187

## Observed difference between means (smoker-nonsmoker) = -0.3155
## 
## Standard error = 0.1338 
## 95 % Confidence interval = ( -0.5777 , -0.0534 )

On your own

inference(y = nc$weeks, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical") 
## Single mean 
## Summary statistics:

## mean = 38.3347 ;  sd = 2.9316 ;  n = 998 
## Standard error = 0.0928 
## 95 % Confidence interval = ( 38.1528 , 38.5165 )

Answer : The above interval shows where the population mean of the duration of pregnancy (in weeks) of North Carolina women will lie with 95% confidence.

inference(y = nc$weeks, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical", conflevel = 0.90) 
## Single mean 
## Summary statistics:

## mean = 38.3347 ;  sd = 2.9316 ;  n = 998 
## Standard error = 0.0928 
## 90 % Confidence interval = ( 38.182 , 38.4873 )

Answer : H0: µ{younger} - µ{mature} = 0, There is no difference in the mean of the birth weight between younger and mature mothers who don’t smoke HA: µ{younger} - µ{mature} != 0, There is a difference in the mean of the birth weight between younger and mature mothers

inference(y = nc$weight, x = nc$mature, est = "mean", type = "ht", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 133, mean_mature mom = 7.1256, sd_mature mom = 1.6591
## n_younger mom = 867, mean_younger mom = 7.0972, sd_younger mom = 1.4855
## Observed difference between means (mature mom-younger mom) = 0.0283
## 
## H0: mu_mature mom - mu_younger mom = 0 
## HA: mu_mature mom - mu_younger mom != 0 
## Standard error = 0.152 
## Test statistic: Z =  0.186 
## p-value =  0.8526

The above result signifies that the null hypothesis cannot be rejected and we infer that there is no difference in birth weight of babies born to younger and mature mothers.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
nc %>% group_by(mature) %>% summarize(max(mage))
## # A tibble: 2 x 2
##        mature max(mage)
##        <fctr>     <int>
## 1  mature mom        50
## 2 younger mom        34
nc %>% group_by(mature) %>% summarize(min(mage))
## # A tibble: 2 x 2
##        mature min(mage)
##        <fctr>     <int>
## 1  mature mom        35
## 2 younger mom        13

Answer : The cutoff age for younger mothers is 34 and for mature mothers 35 and older are considered.

For this analysis I used the dplyr package to group mothers by categorical variable $mature and I used the min/max function to find the maximum age for the younger mothers (which is 34) and the minimum age for the mature mother (which is 35).

Answer : Effect of marital status on weight gained by mothers during pregnancy

H0: µ{married} - µ{not married} = 0, There is no difference in the mean of the weight gained during pregnancy of between married and unmarried mothers

HA: µ{married} - µ{not married} != 0, There is a difference in the mean of the weight gained during pregnancy between married and unmarried mothers

inference(y = nc$gained, x = nc$marital, est = "mean", type = "ht", null = 0, 
          alternative = "twosided", method = "theoretical") 
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_married = 370, mean_married = 29.873, sd_married = 15.2721
## n_not married = 603, mean_not married = 30.6036, sd_not married = 13.5757
## Observed difference between means (married-not married) = -0.7307
## 
## H0: mu_married - mu_not married = 0 
## HA: mu_married - mu_not married != 0 
## Standard error = 0.967 
## Test statistic: Z =  -0.755 
## p-value =  0.4502

inference(y = nc$gained, x = nc$marital, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical") 
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_married = 370, mean_married = 29.873, sd_married = 15.2721
## n_not married = 603, mean_not married = 30.6036, sd_not married = 13.5757

## Observed difference between means (married-not married) = -0.7307
## 
## Standard error = 0.9675 
## 95 % Confidence interval = ( -2.6269 , 1.1655 )

Based on the hypothesis test and confidence interval inference tests, we cannot reject the null hypothesis and we infer that there is no evidence based on statistical data to show that there is a difference between the weight gained by married and unmarried mothers during pregnancy.

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was adapted for OpenIntro by Mine Çetinkaya-Rundel from a lab written by the faculty and TAs of UCLA Statistics.