Overblik over data

#Indlæs nødvendige pakker
library(foreign)
library(ggplot2)
library(ICC)
library(psych)  # god til deskriptic statistik

Attaching package: 'psych'
The following objects are masked from 'package:ggplot2':

    %+%, alpha
library(BlandAltmanLeh)
library(openxlsx) # god til at importere Excel filer

# indlæser modificeret excel fil (der er tilføjet kolonner i excel)

data <- read.xlsx(file.path("C:/Users/Vision/Desktop/STATISTIK/BIOSTATISTIK2/HeatPainThresholds.xlsx"))
head(data)
    test.1   test.2     mean      sum    forskel    sumxsum sumxsumhalv
1 45.93333 46.40000 46.16667 92.33333 -0.4666667 0.10888889  0.05444444
2 47.60000 44.83333 46.21667 92.43333  2.7666667 3.82722222  1.91361111
3 44.80333 44.03667 44.42000 88.84000  0.7666667 0.29388889  0.14694444
4 45.32333 45.76000 45.54167 91.08333 -0.4366667 0.09533889  0.04766944
5 45.21000 43.93667 44.57333 89.14667  1.2733333 0.81068889  0.40534444
6 45.46667 44.48000 44.97333 89.94667  0.9866667 0.48675556  0.24337778
         sd
1 0.2333333
2 1.3833333
3 0.3833333
4 0.2183333
5 0.6366667
6 0.4933333
data <-data[,c(1,2,3,4,5,8)] # reducerer antallet af kolonner (fjerner unødvendige mellemregningskolonner fra Excel)
head(data)
    test.1   test.2     mean      sum    forskel        sd
1 45.93333 46.40000 46.16667 92.33333 -0.4666667 0.2333333
2 47.60000 44.83333 46.21667 92.43333  2.7666667 1.3833333
3 44.80333 44.03667 44.42000 88.84000  0.7666667 0.3833333
4 45.32333 45.76000 45.54167 91.08333 -0.4366667 0.2183333
5 45.21000 43.93667 44.57333 89.14667  1.2733333 0.6366667
6 45.46667 44.48000 44.97333 89.94667  0.9866667 0.4933333
data$test.1 <- as.numeric(data$test.1)
data$test.2 <- as.numeric(data$test.2)

describe.by(data)
        vars  n  mean   sd median trimmed  mad   min   max range  skew
test.1     1 18 45.69 0.72  45.58   45.65 0.54 44.53 47.60  3.07  0.80
test.2     2 18 45.03 0.86  45.10   45.09 0.62 42.77 46.40  3.63 -0.77
mean       3 18 45.36 0.63  45.41   45.37 0.66 44.12 46.48  2.37 -0.13
sum        4 18 90.72 1.26  90.81   90.74 1.33 88.23 92.97  4.73 -0.13
forskel    5 18  0.66 0.97   0.55    0.62 0.73 -0.77  2.77  3.53  0.66
sd         6 18  0.45 0.37   0.34    0.42 0.18  0.03  1.38  1.35  1.50
        kurtosis   se
test.1      0.60 0.17
test.2      0.48 0.20
mean       -0.76 0.15
sum        -0.76 0.30
forskel    -0.13 0.23
sd          1.28 0.09
boxplot(data$test.1, data$test.2)

CV & ICC

mean<- mean(data$mean)
sdmean<-mean(data$sd)
CV<- sdmean/mean
CV*100   # i procent
[1] 0.990584
ICC <- ICCbare(data$test.1, data$test.2, data=data)
ICC
[1] -0.97779

Bland Altman Plot

bland.altman.plot(data$test.1, data$test.2, main="Bland Altman Plot", xlab="Means", ylab="Differences")

NULL

Sample size for parallel study (detect an effect of 2C)

Nparallel<- ((21*0.66^2)/2^2)
Nparallel
[1] 2.2869

Der skal altså bruges mindst 3 personer

Sample size for cross-over study (detect an effect of 2C)

NCrossOver<- ((21*(0.66^2))*(1-0.25))/(2^2)
NCrossOver
[1] 1.715175

Der skal altså bruges mindst 2 personer