Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)
In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.
The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. (This is aslightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).) The result is a data frame where each row contains a different course and columns represent variables about the courses and professors.
load("more/evals.RData")| variable | description |
|---|---|
score |
average professor evaluation score: (1) very unsatisfactory - (5) excellent. |
rank |
rank of professor: teaching, tenure track, tenured. |
ethnicity |
ethnicity of professor: not minority, minority. |
gender |
gender of professor: female, male. |
language |
language of school where professor received education: english or non-english. |
age |
age of professor. |
cls_perc_eval |
percent of students in class who completed evaluation. |
cls_did_eval |
number of students in class who completed evaluation. |
cls_students |
total number of students in class. |
cls_level |
class level: lower, upper. |
cls_profs |
number of professors teaching sections in course in sample: single, multiple. |
cls_credits |
number of credits of class: one credit (lab, PE, etc.), multi credit. |
bty_f1lower |
beauty rating of professor from lower level female: (1) lowest - (10) highest. |
bty_f1upper |
beauty rating of professor from upper level female: (1) lowest - (10) highest. |
bty_f2upper |
beauty rating of professor from second upper level female: (1) lowest - (10) highest. |
bty_m1lower |
beauty rating of professor from lower level male: (1) lowest - (10) highest. |
bty_m1upper |
beauty rating of professor from upper level male: (1) lowest - (10) highest. |
bty_m2upper |
beauty rating of professor from second upper level male: (1) lowest - (10) highest. |
bty_avg |
average beauty rating of professor. |
pic_outfit |
outfit of professor in picture: not formal, formal. |
pic_color |
color of professor’s picture: color, black & white. |
This is an observational study. We can rephrase the question as “What factors leads to the differences in course evaluations?”
score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?hist(evals$score)boxplot(evals$score)summary(evals$score)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.300 3.800 4.300 4.175 4.600 5.000
score represents the average overall score for a professor from a class of students.
From the above charts, the score is left skewed. This shows that the less rating is given to the professors. On average, the rating given to professors is around 4.2.
No. I expected the average rating would be around 3.5. Because if a class students behavior is normal, then their rating will also be normal.
score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).hist(evals$bty_avg)hist(evals$age)plot(evals$bty_avg ~ evals$age)bty_avg is binormal. The distribution is not heavily skewed.
age is not normally distributed. But distribution is not heavily skewed. There are couple of outliers.
When the both parameters are plotted, it does not show any linearlity.
The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
plot(evals$score ~ evals$bty_avg)Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
jitter() on the \(y\)- or the \(x\)-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?par(mfrow = c(1, 3))
plot(evals$score ~ evals$bty_avg)
plot(evals$score ~ jitter(evals$bty_avg))
plot(jitter(evals$score) ~ jitter(evals$bty_avg))#plot(jitter(evals$bty_avg) ~ jitter(evals$bty_avg))In the initial representation, the points does not have any interval. So it shows many distinct points. When we use jitter, it combines with other datapoints. This shows some sort of trend.
m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?ggplot(evals,aes(jitter(bty_avg),score)) + geom_point() + geom_smooth(method="lm")#Manual plot with abline
m_bty <- lm(score ~ bty_avg,evals)
summary(m_bty)##
## Call:
## lm(formula = score ~ bty_avg, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
plot(evals$score ~ evals$bty_avg)
abline(m_bty)Equation for the linear model is 3.89 + 0.067*bty_avg
It does not appear that bty_avg appear to be a significant predictor. Because the value is multipled by 0.067.
Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).
The conditions for least squares are:
– Residuals of model are nearly normal – Variability of residuals is nearly constant – Residuals are independent – Each variable is linealy related to the outcome
plot(m_bty$residuals ~ evals$bty_avg)
abline(h=0,lty = 3)hist(m_bty$residuals)qqnorm(m_bty$residuals)
qqline(m_bty$residuals)The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
plot(evals$bty_avg ~ evals$bty_f1lower)cor(evals$bty_avg, evals$bty_f1lower)## [1] 0.8439112
As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:
plot(evals[,13:19])These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.
m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
Normal probability plot
m_bty_gen <- lm(score ~ bty_avg + gender,data=evals)
summary(m_bty_gen)##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
qqnorm(m_bty_gen$residuals)
qqline(m_bty_gen$residuals)Absolute values of residuals against fitted values
plot(m_bty_gen$residuals ~ evals$bty_avg)
abline(h=0,lty = 3) Residuals against each predictor variable.
boxplot(m_bty_gen$residuals ~ evals$gender )bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?summary(m_bty_gen)##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
No. bty_avg is not a significant predictor of score. When we added another variable to model, gender is the significat predictor of score.
Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of female and male to being an indicator variable called gendermale that takes a value of \(0\) for females and a value of \(1\) for males. (Such variables are often referred to as “dummy” variables.)
As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
We can plot this line and the line corresponding to males with the following custom function.
multiLines(m_bty_gen)score = 3.75 + 0.074 * bty_avg + 0.172 * 1
When two professors who received the same beauty rating, male tends to have higher course evaluation.
The decision to call the indicator variable gendermale instead ofgenderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel function. Use ?relevel to learn more.)
m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.m_bty_rank <- lm(score ~ bty_avg + rank,evals)
summary(m_bty_rank)##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
multiLines(m_bty_rank) R shows the
rank variables as two categorical variables. R provides values to each values in that variable. teaching as 0 and other values as 1 and 2.
The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.
We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
According to my guesss, cls_credits will have least association with professor score.
Let’s run the model…
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77397 -0.32432 0.09067 0.35183 0.95036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0952141 0.2905277 14.096 < 2e-16 ***
## ranktenure track -0.1475932 0.0820671 -1.798 0.07278 .
## ranktenured -0.0973378 0.0663296 -1.467 0.14295
## ethnicitynot minority 0.1234929 0.0786273 1.571 0.11698
## gendermale 0.2109481 0.0518230 4.071 5.54e-05 ***
## languagenon-english -0.2298112 0.1113754 -2.063 0.03965 *
## age -0.0090072 0.0031359 -2.872 0.00427 **
## cls_perc_eval 0.0053272 0.0015393 3.461 0.00059 ***
## cls_students 0.0004546 0.0003774 1.205 0.22896
## cls_levelupper 0.0605140 0.0575617 1.051 0.29369
## cls_profssingle -0.0146619 0.0519885 -0.282 0.77806
## cls_creditsone credit 0.5020432 0.1159388 4.330 1.84e-05 ***
## bty_avg 0.0400333 0.0175064 2.287 0.02267 *
## pic_outfitnot formal -0.1126817 0.0738800 -1.525 0.12792
## pic_colorcolor -0.2172630 0.0715021 -3.039 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared: 0.1871, Adjusted R-squared: 0.1617
## F-statistic: 7.366 on 14 and 448 DF, p-value: 6.552e-14
cls_profssingle has highest p-value. It is followed by cls_levelupper. R has given multiple levels to various cateogorical variable.
ethnicity has an estimate of 0.1234929. Its p-value is 0.11698. This is means the professor who is not minority will have an increase in score of 0.1234929 when everything else is constant.
m_full_1 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval + cls_students + cls_level + cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
summary(m_full_1)##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
We have removed the variable cls_profs which had highest p-value. The coefficients of other variables did not change significantly. Also the adjusted R-squared is has changed a little.
m_full_2 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval + cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
summary(m_full_2)##
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8455 -0.3221 0.1013 0.3745 0.9051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.907030 0.244889 15.954 < 2e-16 ***
## ethnicitynot minority 0.163818 0.075158 2.180 0.029798 *
## gendermale 0.202597 0.050102 4.044 6.18e-05 ***
## languagenon-english -0.246683 0.106146 -2.324 0.020567 *
## age -0.006925 0.002658 -2.606 0.009475 **
## cls_perc_eval 0.004942 0.001442 3.427 0.000666 ***
## cls_creditsone credit 0.517205 0.104141 4.966 9.68e-07 ***
## bty_avg 0.046732 0.017091 2.734 0.006497 **
## pic_outfitnot formal -0.113939 0.067168 -1.696 0.090510 .
## pic_colorcolor -0.180870 0.067456 -2.681 0.007601 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4982 on 453 degrees of freedom
## Multiple R-squared: 0.1774, Adjusted R-squared: 0.161
## F-statistic: 10.85 on 9 and 453 DF, p-value: 2.441e-15
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times ethnicitynot\_minority + \hat{\beta}_3 \times gendermale + \hat{\beta}_4 \times languagenon-english + \hat{\beta}_5 \times age + \hat{\beta}_6 \times cls\_perc\_eval + \hat{\beta}_7 \times cls\_creditsone\_credit + \hat{\beta}_8 \times pic\_colorcolor \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
Verify that the conditions for this model are reasonable using diagnostic plots.
each variable is linearly related to the outcome.
# Normal probability plot
qqnorm(m_full_2$residuals)
qqline(m_full_2$residuals)hist(m_full_2$residuals)#the variability of the residuals is nearly constant - Absolute values of residuals against fitted values.
plot(abs(m_full_2$residuals) ~ m_full_2$fitted.values)#Residuals in order of their data collection. This shows the residuals are independent
plot(m_full_2$residuals ~ c(1:nrow(evals)))# Residuals against each predictor variable. - each variable is linearly related to the outcome.
boxplot(m_full_2$residuals ~ evals$ethnicity)boxplot(m_full_2$residuals ~ evals$gender)boxplot(m_full_2$residuals ~ evals$language)boxplot(m_full_2$residuals ~ evals$cls_credits)boxplot(m_full_2$residuals ~ evals$pic_color)No. The class courses are independent of each other even it is thought by same professor.
Depending on the valuation below are the characteristics of a higher score professor
ethnicity - not minority: positive value. He should not be a minority
gender : positive value. He should be male
languagenon-english : negative score. He should be a english speaker
age: Negative score. Age should be less
cls_perc_eval: positive value. More evaluation
cls_creditsone credit: positive value. Single credit
bty_avg : positive value. Need to have high beauty average.
pic_colorcolor: negative score. He should have black and white picture.
No. This study focus only on that particular state or university. Input parameters or variables can change on demographically. So it cannot be applied to any university.
This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written by Mine Çetinkaya-Rundel and Andrew Bray.