money=c("50000","$50,000","50,000",50000)
class(money)
## [1] "character"
mean(money)
## Warning in mean.default(money): argument is not numeric or logical:
## returning NA
## [1] NA
money1=gsub("\\$","",money)
money1
## [1] "50000"  "50,000" "50,000" "50000"
money2=gsub(",","",money1)
money2
## [1] "50000" "50000" "50000" "50000"
money3=as.numeric(money2)
money3
## [1] 50000 50000 50000 50000
mean(money3)
## [1] 50000
ls()
## [1] "money"  "money1" "money2" "money3"
rm("money2")

rm(list = ls())

data(mtcars)


str(mtcars)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
tail(mtcars)
##                 mpg cyl  disp  hp drat    wt qsec vs am gear carb
## Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
## Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2
## Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.5  0  1    5    4
## Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.5  0  1    5    6
## Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.6  0  1    5    8
## Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.6  1  1    4    2
summary(mtcars)
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec             vs        
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
##  Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
##  Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
##        am              gear            carb      
##  Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :8.000
table(mtcars$gear)
## 
##  3  4  5 
## 15 12  5
table(mtcars$cyl)
## 
##  4  6  8 
## 11  7 14
#install.packages("Hmisc")
summary(mtcars$mpg)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.40   15.42   19.20   20.09   22.80   33.90
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, round.POSIXt, trunc.POSIXt, units
describe(mtcars$mpg)
## mtcars$mpg 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       32        0       25    0.999    20.09    6.796    12.00    14.34 
##      .25      .50      .75      .90      .95 
##    15.43    19.20    22.80    30.09    31.30 
## 
## lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9
summarize(mtcars$mpg,mtcars$cyl,median)
##   mtcars$cyl mtcars$mpg
## 1          4       26.0
## 2          6       19.7
## 3          8       15.2
summarize(mtcars$mpg,mtcars$cyl,summary)
##   mtcars$cyl mtcars.mpg X1st.Qu. Median  Mean X3rd.Qu. Max.
## 1          4       21.4    22.80   26.0 26.66    30.40 33.9
## 2          6       17.8    18.65   19.7 19.74    21.00 21.4
## 3          8       10.4    14.40   15.2 15.10    16.25 19.2
#install.packages("rattle")
#library(rattle)


#install.packages("Rcmdr")

a=sample(150,15,F)
a
##  [1]  84 121  31  91 141 144  42   5 133  57 138  62   1  28  24
iris[a,]
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 84           6.0         2.7          5.1         1.6 versicolor
## 121          6.9         3.2          5.7         2.3  virginica
## 31           4.8         3.1          1.6         0.2     setosa
## 91           5.5         2.6          4.4         1.2 versicolor
## 141          6.7         3.1          5.6         2.4  virginica
## 144          6.8         3.2          5.9         2.3  virginica
## 42           4.5         2.3          1.3         0.3     setosa
## 5            5.0         3.6          1.4         0.2     setosa
## 133          6.4         2.8          5.6         2.2  virginica
## 57           6.3         3.3          4.7         1.6 versicolor
## 138          6.4         3.1          5.5         1.8  virginica
## 62           5.9         3.0          4.2         1.5 versicolor
## 1            5.1         3.5          1.4         0.2     setosa
## 28           5.2         3.5          1.5         0.2     setosa
## 24           5.1         3.3          1.7         0.5     setosa
rnorm(15,10,5)
##  [1]  7.791940  8.673322  9.450006  1.384519 12.593717  9.959854  8.084755
##  [8] 11.661243 10.393114  7.339284  3.160930 12.492351  9.705864  3.552195
## [15] 12.423059
c=mean(seq(1:150))
c
## [1] 75.5
d=sd(seq(1:150))
d
## [1] 43.44537
e=rnorm(15,c,d)
e
##  [1]  65.087672  68.987699  28.277697  29.684220  68.436212 113.336327
##  [7]   9.631312  15.853962  22.791236  87.269415 116.418454 132.651133
## [13] 106.269797 120.968167  77.956584
f=round(e,0)
f
##  [1]  65  69  28  30  68 113  10  16  23  87 116 133 106 121  78
f2=ifelse(f<=0,1,f)
f3=ifelse(f>150,150,f2)
unique(f3)
##  [1]  65  69  28  30  68 113  10  16  23  87 116 133 106 121  78
iris[f,]
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 65           5.6         2.9          3.6         1.3 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 28           5.2         3.5          1.5         0.2     setosa
## 30           4.7         3.2          1.6         0.2     setosa
## 68           5.8         2.7          4.1         1.0 versicolor
## 113          6.8         3.0          5.5         2.1  virginica
## 10           4.9         3.1          1.5         0.1     setosa
## 16           5.7         4.4          1.5         0.4     setosa
## 23           4.6         3.6          1.0         0.2     setosa
## 87           6.7         3.1          4.7         1.5 versicolor
## 116          6.4         3.2          5.3         2.3  virginica
## 133          6.4         2.8          5.6         2.2  virginica
## 106          7.6         3.0          6.6         2.1  virginica
## 121          6.9         3.2          5.7         2.3  virginica
## 78           6.7         3.0          5.0         1.7 versicolor
f
##  [1]  65  69  28  30  68 113  10  16  23  87 116 133 106 121  78