第三回(10月30日) Task Check and Weekly Assignment

To Do
□ Rstudioのプロジェクトを始める
□ オブジェクトに代入してみる
□ 関数に代入してみる
□ ベクトル,マトリックス,リスト,データフレーム型の変数を作ってみる
□ サンプルデータをMoodleからダウンロードする
□ サンプルデータをRstudioに読み込む
□ 性別変数をfactor型に変更する
□ 変数の要約をする

Assignment
サンプルデータをsummary関数で要約した結果を提出しなさい。

SampleCode and Expected Response

obj <- 2
obj
## [1] 2
obj <- 3
obj
## [1] 3
obj2 <- 2
obj3 <- 3
obj2 + obj3
## [1] 5
obj <- c(1, 2, 3)
obj
## [1] 1 2 3
obj <- c(1:10)
obj
##  [1]  1  2  3  4  5  6  7  8  9 10
obj * 2
##  [1]  2  4  6  8 10 12 14 16 18 20
obj <- matrix(c(1:10), nrow = 5)
obj
##      [,1] [,2]
## [1,]    1    6
## [2,]    2    7
## [3,]    3    8
## [4,]    4    9
## [5,]    5   10
obj * 2
##      [,1] [,2]
## [1,]    2   12
## [2,]    4   14
## [3,]    6   16
## [4,]    8   18
## [5,]   10   20
obj <- list(name = c("kosugi", "tanaka", "suzuki"), sex = c("male", "female", 
    "male"), hight = c(170, 160), weight = c(70.6, 80.9, 90.6, 40.3))
obj
## $name
## [1] "kosugi" "tanaka" "suzuki"
## 
## $sex
## [1] "male"   "female" "male"  
## 
## $hight
## [1] 170 160
## 
## $weight
## [1] 70.6 80.9 90.6 40.3
obj$name
## [1] "kosugi" "tanaka" "suzuki"
obj$weight
## [1] 70.6 80.9 90.6 40.3
str(obj)
## List of 4
##  $ name  : chr [1:3] "kosugi" "tanaka" "suzuki"
##  $ sex   : chr [1:3] "male" "female" "male"
##  $ hight : num [1:2] 170 160
##  $ weight: num [1:4] 70.6 80.9 90.6 40.3
obj <- data.frame(list(name = c("kosugi", "tanaka", "suzuki"), sex = c(1, 2, 
    1), hight = c(170, 160, 170), weight = c(70.6, 80.9, 90.6)))
obj
##     name sex hight weight
## 1 kosugi   1   170   70.6
## 2 tanaka   2   160   80.9
## 3 suzuki   1   170   90.6
str(obj)
## 'data.frame':    3 obs. of  4 variables:
##  $ name  : Factor w/ 3 levels "kosugi","suzuki",..: 1 3 2
##  $ sex   : num  1 2 1
##  $ hight : num  170 160 170
##  $ weight: num  70.6 80.9 90.6
obj$sex
## [1] 1 2 1
obj$sex <- factor(obj$sex, labels = c("male", "female"))
obj
##     name    sex hight weight
## 1 kosugi   male   170   70.6
## 2 tanaka female   160   80.9
## 3 suzuki   male   170   90.6
str(obj)
## 'data.frame':    3 obs. of  4 variables:
##  $ name  : Factor w/ 3 levels "kosugi","suzuki",..: 1 3 2
##  $ sex   : Factor w/ 2 levels "male","female": 1 2 1
##  $ hight : num  170 160 170
##  $ weight: num  70.6 80.9 90.6
obj$hight
## [1] 170 160 170
obj[3, ]
##     name  sex hight weight
## 3 suzuki male   170   90.6
obj[, 2]
## [1] male   female male  
## Levels: male female
obj[3, 2]
## [1] male
## Levels: male female
obj[3, 2] <- NA
summary(obj)
##      name       sex        hight         weight    
##  kosugi:1   male  :1   Min.   :160   Min.   :70.6  
##  suzuki:1   female:1   1st Qu.:165   1st Qu.:75.8  
##  tanaka:1   NA's  :1   Median :170   Median :80.9  
##                        Mean   :167   Mean   :80.7  
##                        3rd Qu.:170   3rd Qu.:85.8  
##                        Max.   :170   Max.   :90.6
sample <- read.csv("sample(mac).csv", head = T, na.strings = "*")
summary(sample)
##        ID        class       sex          height        weight    
##  Min.   :  1.0   A:34   Min.   :1.0   Min.   :132   Min.   :33.2  
##  1st Qu.: 25.8   B:33   1st Qu.:1.0   1st Qu.:145   1st Qu.:50.6  
##  Median : 50.5   C:33   Median :1.5   Median :150   Median :56.0  
##  Mean   : 50.5          Mean   :1.5   Mean   :151   Mean   :56.8  
##  3rd Qu.: 75.2          3rd Qu.:2.0   3rd Qu.:157   3rd Qu.:63.1  
##  Max.   :100.0          Max.   :2.0   Max.   :172   Max.   :87.0  
##                                                                   
##      kokugo         sansuu          rika          syakai    
##  Min.   :34.0   Min.   :58.0   Min.   :34.0   Min.   :20.0  
##  1st Qu.:55.0   1st Qu.:68.0   1st Qu.:46.5   1st Qu.:40.8  
##  Median :64.0   Median :72.0   Median :51.0   Median :48.0  
##  Mean   :64.5   Mean   :71.5   Mean   :50.5   Mean   :49.4  
##  3rd Qu.:74.0   3rd Qu.:75.5   3rd Qu.:54.0   3rd Qu.:57.2  
##  Max.   :94.0   Max.   :86.0   Max.   :66.0   Max.   :86.0  
##  NA's   :1      NA's   :1      NA's   :1                    
##       eigo     
##  Min.   :25.0  
##  1st Qu.:49.0  
##  Median :61.0  
##  Mean   :59.9  
##  3rd Qu.:71.0  
##  Max.   :94.0