The data are 8 years of daily air pollution measurements from Seattle.

seattle<-read.csv("~/Documents/TEACHING/517/seattlepm.csv")
head(seattle)
##    date mo yr dow       pm1 temp stagno admyng gasyng
## 1 10000  5 87   3 0.2642518   52    7.0      2      0
## 2 10001  5 87   4 0.4894978   55    7.5      1      1
## 3 10002  5 87   5 0.3777940   59   10.5      1      1
## 4 10003  5 87   6 0.5317807   55    8.0      6      1
## 5 10004  5 87   7 0.4188140   58    7.5      4      2
## 6 10005  5 87   1 0.3956474   58   11.0      3      1

We can turn the pm1 variable into the standard micrograms per cubic meter units, and also recode into groups

seattle$pm1mass <- 21*seattle$pm1
seattle$pmgp <- cut(seattle$pm1mass, c(0,6,12,18,Inf))

And now some plots

coplot(pm1~temp|stagno,data=seattle)

## 
##  Missing rows: 172, 173, 174, 175, 489, 490, 691, 692, 693, 713, 716, 718, 719, 720, 721, 722, 723, 1624, 1625
coplot(pm1~stagno|temp, data=seattle)

## 
##  Missing rows: 172, 173, 174, 175, 489, 490, 691, 692, 693, 713, 716, 718, 719, 720, 721, 722, 723, 1624, 1625

And from another viewpoint

library(hextri)
hextri(stagno~temp,data=seattle, class=pmgp, colour=c("blue","darkgrey","orange","sienna"), style="size",nbins=25, diffuse=TRUE, sort=TRUE, ylab="Air stagnation (hrs/day)",xlab="Temperature (F)")
legend("topleft",col=rev(c("blue","darkgrey","orange","sienna")),pch=19, legend=rev(c("very low","low","moderate","high")),bty="n")

Fine particle pollution is higher with stagnant air (obviously) and at lower temperatures (because wood fireplaces). Air stagnation tends to be higher when it’s cold – Seattle gets some winter temperature inversions.