library(ggplot2)
library(dplyr)
library(scales)
data <- read.csv('./data.csv')
data %>%
group_by(Gender) %>%
summarise(n = sum(CountOfMSPID1)) %>%
mutate(Percent = n / sum(n)) %>%
ggplot() +
geom_bar(aes(Gender, Percent), stat='identity') +
geom_text(aes(Gender, Percent, label=sprintf('%1.0f%%', 100*Percent)), vjust=-0.5) +
labs(
title='State Police - Gender breakdown'
) +
scale_y_continuous(labels=percent)