library(ggplot2)
library(dplyr)
library(scales)

data <- read.csv('./data.csv')

data %>%
    group_by(Gender) %>%
    summarise(n = sum(CountOfMSPID1)) %>%
    mutate(Percent = n / sum(n)) %>%
    ggplot() +
    geom_bar(aes(Gender, Percent), stat='identity') +
    geom_text(aes(Gender, Percent, label=sprintf('%1.0f%%', 100*Percent)), vjust=-0.5) +
    labs(
        title='State Police - Gender breakdown'
    ) +
    scale_y_continuous(labels=percent)