blsAPI
PackageMake a five-minute presentation on any chosen topic, preferably any topic from the current week’s chapter reading of Data Science for Business, or another topic that would be of interest to most. Do not just summarize the topic, go a little further, such as:
You may also record your presentation instead of presenting in our meetup. Effective data scientists need to be effective presenters, so making a presentation in front of a group is strongly encouraged but not required. In DATA 607, our primary focus is on writing R code related to getting and shaping data in preparation for downstream modeling and presentations.
The BLS Public Data Application Programming Interface (API) is an application designed to allow third party programmers, developers, and organizations to retrieve published historical time series data in JSON
data-interchange format. Using Public Data API signatures, users can consume and manipulate raw data from all of the Bureau’s surveys to create a wide range of applications that conform to W3C standards and accepted practices. The BLS Public Data API Version 1.0 does not require registration and is open for public use. The BLS Public Data API Version 2.0 does require registration. API Version 2.0 offers greater query limits and allows users to request net changes, percent changes, and series description information. The API has a few known limitations specified on the website. The one which becomes most readily apparent as soon as one starts working with the API is that users must have knowledge of BLS Series IDs in order to successfully complete a request.
Service | Version 2.0 | Version 1.0 |
---|---|---|
Daily query limit | 500 | 25 |
Series per query limit | 50 | 25 |
Years per query limit | 20 | 10 |
Net/Percent Changes | Yes | No |
Optional annual averages | Yes | No |
Series description information (catalog) | Yes | No |
blsAPI
PackageThe blsAPI
Package allows users to request data for one or multiple series through the U.S. Bureau of Labor Statistics API.
library(blsAPI)
library(dplyr)
library(tidyr)
blsAPI
FunctionblsAPI(payload = NA, api.version = 1, return.data.frame = FALSE)
The blsAPI
function allows users to request data for one or multiple series through the U.S. Bureau of Labor Statistics API. Users provide parameters and the function returns a JSON string or data frame. The Payload
parameter consists of a string or a list containing the series name(s) to be sent to the API. Most Series ID formats can be found here. To retrieve optional parameters, users must include their assigned registration key. Optional parameters are startyear
, endyear
, calculations
, annualaverage
, and catalog
data.
payload <- 'LAUCN040010000000005'
single <- blsAPI(payload, api.version = 1, return.data.frame = T)
head(single)
## year period periodName value seriesID
## 1 2016 M10 October 18170 LAUCN040010000000005
## 2 2016 M09 September 18552 LAUCN040010000000005
## 3 2016 M08 August 18566 LAUCN040010000000005
## 4 2016 M07 July 17933 LAUCN040010000000005
## 5 2016 M06 June 18115 LAUCN040010000000005
## 6 2016 M05 May 18259 LAUCN040010000000005
payload <- list('seriesid'=c('LAUCN040010000000005', 'LAUCN040010000000006'))
multiple <- blsAPI(payload, api.version = 1, return.data.frame = T)
head(multiple)
## year period periodName value seriesID
## 1 2016 M10 October 18170 LAUCN040010000000005
## 2 2016 M09 September 18552 LAUCN040010000000005
## 3 2016 M08 August 18566 LAUCN040010000000005
## 4 2016 M07 July 17933 LAUCN040010000000005
## 5 2016 M06 June 18115 LAUCN040010000000005
## 6 2016 M05 May 18259 LAUCN040010000000005
payload <- list(
'seriesid' = c('LAUCN040010000000005', 'LAUCN040010000000006'),
'startyear' = 2010,
'endyear' = 2012,
'calculations' = TRUE,
'annualaverage' = TRUE,
'catalog' = TRUE,
'registrationKey' = API_Key)
parameters <- blsAPI(payload, api.version = 2, return.data.frame = T)
head(parameters)
## year period periodName value seriesID
## 1 2012 M13 Annual 18494 LAUCN040010000000005
## 2 2012 M12 December 18281 LAUCN040010000000005
## 3 2012 M11 November 18236 LAUCN040010000000005
## 4 2012 M10 October 18616 LAUCN040010000000005
## 5 2012 M09 September 19008 LAUCN040010000000005
## 6 2012 M08 August 18972 LAUCN040010000000005
blsQCEW
FunctionblsQCEW(method, year = NA, quarter = NA, area = NA, industry = NA, size = NA)
The blsQCEW
function allows users to request quarterly census of employment and wages (QCEW) data from the U.S. Bureau of Labor Statistics open access. Users provide parameters and the function returns a data frame. This function is based off of the sample code developed by the BLS. The method
parameter consists of a case insensitive string describing which type of data you want requested. Valid options are area
, industry
, and size
.
area <- blsQCEW('area', year='2013', quarter='1', area='36005')
names(area)
## [1] "area_fips" "own_code"
## [3] "industry_code" "agglvl_code"
## [5] "size_code" "year"
## [7] "qtr" "disclosure_code"
## [9] "qtrly_estabs" "month1_emplvl"
## [11] "month2_emplvl" "month3_emplvl"
## [13] "total_qtrly_wages" "taxable_qtrly_wages"
## [15] "qtrly_contributions" "avg_wkly_wage"
## [17] "lq_disclosure_code" "lq_qtrly_estabs"
## [19] "lq_month1_emplvl" "lq_month2_emplvl"
## [21] "lq_month3_emplvl" "lq_total_qtrly_wages"
## [23] "lq_taxable_qtrly_wages" "lq_qtrly_contributions"
## [25] "lq_avg_wkly_wage" "oty_disclosure_code"
## [27] "oty_qtrly_estabs_chg" "oty_qtrly_estabs_pct_chg"
## [29] "oty_month1_emplvl_chg" "oty_month1_emplvl_pct_chg"
## [31] "oty_month2_emplvl_chg" "oty_month2_emplvl_pct_chg"
## [33] "oty_month3_emplvl_chg" "oty_month3_emplvl_pct_chg"
## [35] "oty_total_qtrly_wages_chg" "oty_total_qtrly_wages_pct_chg"
## [37] "oty_taxable_qtrly_wages_chg" "oty_taxable_qtrly_wages_pct_chg"
## [39] "oty_qtrly_contributions_chg" "oty_qtrly_contributions_pct_chg"
## [41] "oty_avg_wkly_wage_chg" "oty_avg_wkly_wage_pct_chg"
industry <- blsQCEW('industry', year='2013', quarter='1', industry='21222')
names(industry)
## [1] "area_fips" "own_code"
## [3] "industry_code" "agglvl_code"
## [5] "size_code" "year"
## [7] "qtr" "disclosure_code"
## [9] "qtrly_estabs" "month1_emplvl"
## [11] "month2_emplvl" "month3_emplvl"
## [13] "total_qtrly_wages" "taxable_qtrly_wages"
## [15] "qtrly_contributions" "avg_wkly_wage"
## [17] "lq_disclosure_code" "lq_qtrly_estabs"
## [19] "lq_month1_emplvl" "lq_month2_emplvl"
## [21] "lq_month3_emplvl" "lq_total_qtrly_wages"
## [23] "lq_taxable_qtrly_wages" "lq_qtrly_contributions"
## [25] "lq_avg_wkly_wage" "oty_disclosure_code"
## [27] "oty_qtrly_estabs_chg" "oty_qtrly_estabs_pct_chg"
## [29] "oty_month1_emplvl_chg" "oty_month1_emplvl_pct_chg"
## [31] "oty_month2_emplvl_chg" "oty_month2_emplvl_pct_chg"
## [33] "oty_month3_emplvl_chg" "oty_month3_emplvl_pct_chg"
## [35] "oty_total_qtrly_wages_chg" "oty_total_qtrly_wages_pct_chg"
## [37] "oty_taxable_qtrly_wages_chg" "oty_taxable_qtrly_wages_pct_chg"
## [39] "oty_qtrly_contributions_chg" "oty_qtrly_contributions_pct_chg"
## [41] "oty_avg_wkly_wage_chg" "oty_avg_wkly_wage_pct_chg"
size <- blsQCEW('size', year='2013', size='6')
names(size)
## [1] "area_fips" "own_code"
## [3] "industry_code" "agglvl_code"
## [5] "size_code" "year"
## [7] "qtr" "disclosure_code"
## [9] "qtrly_estabs" "month1_emplvl"
## [11] "month2_emplvl" "month3_emplvl"
## [13] "total_qtrly_wages" "taxable_qtrly_wages"
## [15] "qtrly_contributions" "avg_wkly_wage"
## [17] "lq_disclosure_codes" "lq_qtrly_estabs"
## [19] "lq_month1_emplvl" "lq_month2_emplvl"
## [21] "lq_month3_emplvl" "lq_total_qtrly_wages"
## [23] "lq_taxable_qtrly_wages" "lq_qtrly_contributions"
## [25] "lq_avg_wkly_wage" "oty_disclosure_code"
## [27] "oty_qtrly_estabs_chg" "oty_qtrly_estabs_pct_chg"
## [29] "oty_month1_emplvl_chg" "oty_month1_emplvl_pct_chg"
## [31] "oty_month2_emplvl_chg" "oty_month2_emplvl_pct_chg"
## [33] "oty_month3_emplvl_chg" "oty_month3_emplvl_pct_chg"
## [35] "oty_total_qtrly_wages_chg" "oty_total_qtrly_wages_pct_chg"
## [37] "oty_taxable_qtrly_wages_chg" "oty_taxable_qtrly_wages_pct_chg"
## [39] "oty_qtrly_contributions_chg" "oty_qtrly_contributions_pct_chg"
## [41] "oty_avg_wkly_wage_chg" "oty_avg_wkly_wage_pct_chg"
For over 60 years, the Standard Industrial Classification (SIC) system served as the structure for the collection, presentation, and analysis of the U.S. economy. Over the years, there were numerous revisions to the SIC system. Despite these revisions, the system received increasing criticism. Developments in information services, new forms of health care provision, expansion of services, and high-tech manufacturing are examples of industrial changes that could not be studied under the SIC system. NAICS was introduced in 1997 and is periodically revised to reflect changes in the industrial structure of the U.S. and North American economy. NAICS provides a tool to ensure that economic statistics reflect the changing economy.
BLS_Products <- read.csv(paste0("https://raw.githubusercontent.com/jzuniga123/SPS/master/",
"DATA%20607/BLS_Products.csv"), stringsAsFactors = F)
BLS_Products <- BLS_Products %>% filter(NAICS_SIC == "N" & HISTORIC !=1)
BLS_Products %>% select(SERIES) %>% arrange (SERIES)
## SERIES
## 1 All Urban Consumers
## 2 American Time Use Survey
## 3 Average Price Data
## 4 Benefits (2010 forward)
## 5 Business Employment Dynamics
## 6 Census of Fatal Occupational Injuries (2011 forward)
## 7 Chained CPI-All Urban Consumers
## 8 Commodity Data - Current Series
## 9 Consumer Expenditure Survey
## 10 Employment and Wages
## 11 Geographic Profile
## 12 Import/Export Price Indexes
## 13 Industry Data - Current Series
## 14 Industry Productivity
## 15 Job Openings and Labor Turnover Survey
## 16 Labor Force Statistics
## 17 Local Area Unemployment Statistics
## 18 Major Sector Multifactor Productivity
## 19 Major Sector Productivity and Costs
## 20 Marital and Family Labor Force Statistics
## 21 Modeled Wage Estimates
## 22 National Compensation Survey
## 23 National Employment, Hours, and Earnings
## 24 Nonfatal cases involving days away from work (2011 forward)
## 25 Occupational Injuries and Illnesses - Industry Data (2014 forward)
## 26 Occupational Requirements Survey
## 27 State and Area Employment, Hours, and Earnings
## 28 State and County Employment and Wages
## 29 Union Affiliation Data
## 30 Urban Wage Earners and Clerical Workers
## 31 Work Stoppage Data
examine <- function(Program) {
product <- BLS_Products %>% filter(PROGRAM == Program)
cat(noquote(paste0(rep("#", 75), collapse = "")),"\n")
for (i in 1:nrow(product)) {
payload <- list('seriesid' = product[i, "ID_EXAMPLE"], 'registrationKey' = API_Key)
data <- blsAPI(payload, api.version = 2, return.data.frame = T)
result <- list(PRODUCT_NAME = noquote(product[i, "SERIES"]),
LINKS = noquote(cbind(
information = c("PRODUCT_OVERVIEW",
"SERIES_DETAILS",
"POPULAR_QUERIES"),
link = c(product[i, "OVERVIEW"],
product[i, "DEFINITIONS"],
product[i, "POPULAR"]))),
PREVIEW = head(data))
print(result)
cat(noquote(paste0(rep("#", 75), collapse = "")),"\n")
}
}
examine("IIF")
## ###########################################################################
## $PRODUCT_NAME
## [1] Census of Fatal Occupational Injuries (2011 forward)
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/FW/FW.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/FW
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?FW
##
## $PREVIEW
## year period periodName value seriesID
## 1 2014 A01 Annual 4821 FWU00X00000080N00
## 2 2013 A01 Annual 4585 FWU00X00000080N00
## 3 2012 A01 Annual 4628 FWU00X00000080N00
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Nonfatal cases involving days away from work (2011 forward)
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/CS/CS.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/CS
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?CS
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 1153490 CSU00X00000063000
## 2 2014 A01 Annual 1157410 CSU00X00000063000
## 3 2013 A01 Annual 1162210 CSU00X00000063000
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Occupational Injuries and Illnesses - Industry Data (2014 forward)
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/IS/IS.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/IS
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?IS
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 1.7 ISU00000000000000
## 2 2014 A01 Annual 1.6 ISU00000000000000
##
## ###########################################################################
examine("NCS")
## ###########################################################################
## $PRODUCT_NAME
## [1] Benefits (2010 forward)
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/NB/NB.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/NB
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?NB
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 A01 Annual 62.00 NBU10000000000000028007
## 2 2015 A01 Annual 63.00 NBU10000000000000028007
## 3 2014 A01 Annual 63.00 NBU10000000000000028007
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Modeled Wage Estimates
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/WM/WM.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/WM
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?WM
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 35.45 WMU00000001020000001300002400
## 2 2014 A01 Annual 34.72 WMU00000001020000001300002400
##
## ###########################################################################
## $PRODUCT_NAME
## [1] National Compensation Survey
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/NC/NC.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/NC
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?NC
##
## $PREVIEW
## year period periodName value seriesID
## 1 2004 M08 August $8.67 NCU5306623300003
## 2 2003 M08 August $9.79 NCU5306623300003
## 3 2002 M08 August $8.29 NCU5306623300003
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Occupational Requirements Survey
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/OR/OR.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/OR
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?OR
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 A01 Annual 15.7 ORUC1000000000000842
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Work Stoppage Data
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/WS/WS.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/WS
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?WS
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 3 WSU200
## 2 2016 M09 September 2 WSU200
## 3 2016 M08 August 0 WSU200
## 4 2016 M07 July 1 WSU200
## 5 2016 M06 June 2 WSU200
## 6 2016 M05 May 3 WSU200
##
## ###########################################################################
examine("TUS")
## ###########################################################################
## $PRODUCT_NAME
## [1] American Time Use Survey
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/TU/TU.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/TU
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?TU
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 3.53 TUU10101AA01011987
## 2 2014 A01 Annual 3.59 TUU10101AA01011987
## 3 2013 A01 Annual 3.46 TUU10101AA01011987
##
## ###########################################################################
examine("CES")
## ###########################################################################
## $PRODUCT_NAME
## [1] National Employment, Hours, and Earnings
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/CE/CE.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/CE
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?CE
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M11 November 25.56 CEU0800000003
## 2 2016 M10 October 25.76 CEU0800000003
## 3 2016 M09 September 25.43 CEU0800000003
## 4 2016 M08 August 25.19 CEU0800000003
## 5 2016 M07 July 25.20 CEU0800000003
## 6 2016 M06 June 25.09 CEU0800000003
##
## ###########################################################################
examine("SEA")
## ###########################################################################
## $PRODUCT_NAME
## [1] State and Area Employment, Hours, and Earnings
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/SM/SM.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/SM
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?SM
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 13.7 SMU19197802023800001
## 2 2016 M09 September 13.6 SMU19197802023800001
## 3 2016 M08 August 13.8 SMU19197802023800001
## 4 2016 M07 July 13.8 SMU19197802023800001
## 5 2016 M06 June 13.6 SMU19197802023800001
## 6 2016 M05 May 13.1 SMU19197802023800001
##
## ###########################################################################
examine("CPS")
## ###########################################################################
## $PRODUCT_NAME
## [1] Labor Force Statistics
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://www.bls.gov/cps/lfcharacteristics.htm
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/LN
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?LN
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M11 November 159486 LNS11000000
## 2 2016 M10 October 159712 LNS11000000
## 3 2016 M09 September 159907 LNS11000000
## 4 2016 M08 August 159463 LNS11000000
## 5 2016 M07 July 159287 LNS11000000
## 6 2016 M06 June 158880 LNS11000000
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Marital and Family Labor Force Statistics
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/FM/FM.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/FM
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?FM
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 80.0 FMUP1378851
## 2 2014 A01 Annual 80.1 FMUP1378851
## 3 2013 A01 Annual 80.0 FMUP1378851
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Union Affiliation Data
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/LU/LU.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/LU
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?LU
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 14795 LUU0203161800
## 2 2014 A01 Annual 14576 LUU0203161800
## 3 2013 A01 Annual 14528 LUU0203161800
##
## ###########################################################################
examine("GPS")
## ###########################################################################
## $PRODUCT_NAME
## [1] Geographic Profile
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/GP/GP.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/GP
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?GP
##
## $PREVIEW
## year period periodName value seriesID
## 1 1998 A01 Annual 6.7 GPU00200000R0328
## 2 1997 A01 Annual 7.6 GPU00200000R0328
## 3 1996 A01 Annual 12.1 GPU00200000R0328
##
## ###########################################################################
examine("JOLTS")
## ###########################################################################
## $PRODUCT_NAME
## [1] Job Openings and Labor Turnover Survey
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/JT/JT.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/JT
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?JT
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M09 September 5186 JTU00000000HIL
## 2 2016 M08 August 5853 JTU00000000HIL
## 3 2016 M07 July 5692 JTU00000000HIL
## 4 2016 M06 June 5960 JTU00000000HIL
## 5 2016 M05 May 5629 JTU00000000HIL
## 6 2016 M04 April 5496 JTU00000000HIL
##
## ###########################################################################
examine("LAU")
## ###########################################################################
## $PRODUCT_NAME
## [1] Local Area Unemployment Statistics
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/LA/LA.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/LA
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?LA
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 7.0 LAUCN281070000000003
## 2 2016 M09 September 7.1 LAUCN281070000000003
## 3 2016 M08 August 6.7 LAUCN281070000000003
## 4 2016 M07 July 8.0 LAUCN281070000000003
## 5 2016 M06 June 8.2 LAUCN281070000000003
## 6 2016 M05 May 7.8 LAUCN281070000000003
##
## ###########################################################################
examine("OES")
## ###########################################################################
## $PRODUCT_NAME
## [1] Employment and Wages
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/OE/OE.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/OE
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?OE
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 2450 OEUN000000021210011000001
##
## ###########################################################################
examine("CEW")
## ###########################################################################
## $PRODUCT_NAME
## [1] Business Employment Dynamics
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/BD/BD.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/BD
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?BD
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 Q01 1st Quarter 873 BDS0000000000000000110101LQ5
## 2 2015 Q04 4th Quarter 957 BDS0000000000000000110101LQ5
## 3 2015 Q03 3rd Quarter 891 BDS0000000000000000110101LQ5
## 4 2015 Q02 2nd Quarter 904 BDS0000000000000000110101LQ5
## 5 2015 Q01 1st Quarter 926 BDS0000000000000000110101LQ5
## 6 2014 Q04 4th Quarter 922 BDS0000000000000000110101LQ5
##
## ###########################################################################
## $PRODUCT_NAME
## [1] State and County Employment and Wages
##
## $LINKS
## information
## [1,] PRODUCT_OVERVIEW
## [2,] SERIES_DETAILS
## [3,] POPULAR_QUERIES
## link
## [1,] http://www.bls.gov/help/def/en.htm
## [2,] http://data.bls.gov/cew/doc/access/csv_data_slices.htm
## [3,] http://data.bls.gov/cgi-bin/surveymost?EN
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M03 March 9042171 ENU3600010010
## 2 2016 M02 February 8985893 ENU3600010010
## 3 2016 M01 January 8943122 ENU3600010010
## 4 2015 M12 December 9225818 ENU3600010010
## 5 2015 M11 November 9221160 ENU3600010010
## 6 2015 M10 October 9182271 ENU3600010010
##
## ###########################################################################
examine("CEX")
## ###########################################################################
## $PRODUCT_NAME
## [1] Consumer Expenditure Survey
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/CX/CX.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/CX
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?CX
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 422 CXUMENBOYSLB0101M
## 2 2014 A01 Annual 430 CXUMENBOYSLB0101M
## 3 2013 A01 Annual 374 CXUMENBOYSLB0101M
##
## ###########################################################################
examine("CPI")
## ###########################################################################
## $PRODUCT_NAME
## [1] All Urban Consumers
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/CU/CU.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/CU
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?CU
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 249.218 CUUR0000SA0L1E
## 2 2016 M09 September 248.731 CUUR0000SA0L1E
## 3 2016 M08 August 248.278 CUUR0000SA0L1E
## 4 2016 M07 July 247.744 CUUR0000SA0L1E
## 5 2016 M06 June 247.794 CUUR0000SA0L1E
## 6 2016 M05 May 247.544 CUUR0000SA0L1E
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Average Price Data
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/AP/AP.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/AP
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?AP
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 1.343 APU0000702111
## 2 2016 M09 September 1.329 APU0000702111
## 3 2016 M08 August 1.341 APU0000702111
## 4 2016 M07 July 1.349 APU0000702111
## 5 2016 M06 June 1.333 APU0000702111
## 6 2016 M05 May 1.382 APU0000702111
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Chained CPI-All Urban Consumers
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/SU/SU.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/SU
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?SU
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 137.750 SUUR0000SA0
## 2 2016 M09 September 137.564 SUUR0000SA0
## 3 2016 M08 August 137.211 SUUR0000SA0
## 4 2016 M07 July 137.148 SUUR0000SA0
## 5 2016 M06 June 137.470 SUUR0000SA0
## 6 2016 M05 May 136.992 SUUR0000SA0
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Urban Wage Earners and Clerical Workers
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/CW/CW.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/CW
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?CW
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 241.016 CWSR0000SA0L1E
## 2 2016 M09 September 240.714 CWSR0000SA0L1E
## 3 2016 M08 August 240.464 CWSR0000SA0L1E
## 4 2016 M07 July 239.896 CWSR0000SA0L1E
## 5 2016 M06 June 239.681 CWSR0000SA0L1E
## 6 2016 M05 May 239.376 CWSR0000SA0L1E
##
## ###########################################################################
examine("IPP")
## ###########################################################################
## $PRODUCT_NAME
## [1] Import/Export Price Indexes
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/EI/EI.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/EI
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?EI
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 124.2 EIUCOCANMANU
## 2 2016 M09 September 123.7 EIUCOCANMANU
## 3 2016 M08 August 123.5 EIUCOCANMANU
## 4 2016 M07 July 124.7 EIUCOCANMANU
## 5 2016 M06 June 123.9 EIUCOCANMANU
## 6 2016 M05 May 123.1 EIUCOCANMANU
##
## ###########################################################################
examine("PPI")
## ###########################################################################
## $PRODUCT_NAME
## [1] Commodity Data - Current Series
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/WP/WP.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/WP
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?WP
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 133.1 WPS141101
## 2 2016 M09 September 133.8 WPS141101
## 3 2016 M08 August 132.9 WPS141101
## 4 2016 M07 July 133.3 WPS141101
## 5 2016 M06 June 134.2 WPS141101
## 6 2016 M05 May 134.4 WPS141101
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Industry Data - Current Series
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/PC/PC.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/PC
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?PC
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 M10 October 170.9 PCU22112222112241
## 2 2016 M09 September 177.1 PCU22112222112241
## 3 2016 M08 August 176.8 PCU22112222112241
## 4 2016 M07 July 175.7 PCU22112222112241
## 5 2016 M06 June 174.3 PCU22112222112241
## 6 2016 M05 May 169.5 PCU22112222112241
##
## ###########################################################################
examine("LPC")
## ###########################################################################
## $PRODUCT_NAME
## [1] Industry Productivity
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/IP/IP.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/IP
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?IP
##
## $PREVIEW
## [1] year period periodName value
## <0 rows> (or 0-length row.names)
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Major Sector Multifactor Productivity
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/MP/MP.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/MP
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?MP
##
## $PREVIEW
## year period periodName value seriesID
## 1 2015 A01 Annual 104.798 MPU4900012
## 2 2014 A01 Annual 104.558 MPU4900012
## 3 2013 A01 Annual 103.841 MPU4900012
##
## ###########################################################################
## $PRODUCT_NAME
## [1] Major Sector Productivity and Costs
##
## $LINKS
## information link
## [1,] PRODUCT_OVERVIEW http://download.bls.gov/pub/time.series/PR/PR.txt
## [2,] SERIES_DETAILS http://download.bls.gov/pub/time.series/PR
## [3,] POPULAR_QUERIES http://data.bls.gov/cgi-bin/surveymost?PR
##
## $PREVIEW
## year period periodName value seriesID
## 1 2016 Q03 3rd Quarter 0.3 PRS85006032
## 2 2016 Q02 2nd Quarter 1.7 PRS85006032
## 3 2016 Q01 1st Quarter 1.4 PRS85006032
## 4 2015 Q04 4th Quarter 3.3 PRS85006032
## 5 2015 Q03 3rd Quarter -0.2 PRS85006032
## 6 2015 Q02 2nd Quarter 1.9 PRS85006032
##
## ###########################################################################
http://www.bls.gov/bls/naics.htm
http://data.bls.gov/cgi-bin/srgate
http://www.bls.gov/bls/senior_staff/
http://www.bls.gov/bls/api_features.htm
http://www.bls.gov/developers/api_r.htm
http://www.bls.gov/bls/proghome_a-z.htm
http://www.bls.gov/opub/mpbls/mpbls919.pdf