1/4 CLEAR 96X130, SS06CLR96130

MAM Quarterly (H.W. with mult. error, MAPE = 5%)

A <- ts(c(1074,1381,1181,1143,1220,1176,1379,1667,1413,1830,1400,1114,1217,1203,1324,1805,1474,1370,2239,1817,1884,2188,2118,2026,1626,1526,1099,1422,1979,1752,1909,2196,2275,2613,2327,2649,2008,1520,1695,2076,1725,2184,2591,2627,2590,2975,2349,2800,1926,1870,2327,2273,2418,2596,2578,3146,2656,2386
), 
        start = c(2012, 1), frequency = 12)

Monthly

AData <- window(A)
fit <- ets(AData, model = "MAM")
summary(fit)
## ETS(M,A,M) 
## 
## Call:
##  ets(y = AData, model = "MAM") 
## 
##   Smoothing parameters:
##     alpha = 0.001 
##     beta  = 8e-04 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 1243.9225 
##     b = 24.0393 
##     s=1.1264 1.0676 1.215 1.0808 1.1453 1.1002
##            0.9214 0.9136 0.9221 0.8216 0.8366 0.8494
## 
##   sigma:  0.1157
## 
##      AIC     AICc      BIC 
## 893.6213 908.9213 928.6489 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE   MAPE      MASE
## Training set -20.48308 219.9445 165.3238 -2.657917 9.3926 0.4353865
##                  ACF1
## Training set 0.071752
plot(fit)

plot(forecast(fit,h=8),
  ylab="Forecasted Demand")

forecast(fit)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2016       2803.583 2387.803 3219.363 2167.702 3439.463
## Dec 2016       2983.791 2541.285 3426.297 2307.036 3660.545
## Jan 2017       2269.869 1933.238 2606.499 1755.037 2784.700
## Feb 2017       2254.887 1920.477 2589.298 1743.451 2766.324
## Mar 2017       2233.444 1902.211 2564.678 1726.867 2740.022
## Apr 2017       2527.982 2153.063 2902.902 1954.592 3101.372
## May 2017       2525.699 2151.112 2900.286 1952.818 3098.581
## Jun 2017       2568.585 2187.629 2949.540 1985.964 3151.206
## Jul 2017       3092.506 2633.834 3551.177 2391.028 3793.984
## Aug 2017       3245.865 2764.432 3727.297 2509.577 3982.152
## Sep 2017       3087.770 2629.769 3545.771 2387.318 3788.222
## Oct 2017       3499.452 2980.365 4018.540 2705.577 4293.328
## Nov 2017       3099.600 2639.801 3559.399 2396.398 3802.802
## Dec 2017       3296.087 2807.113 3785.061 2548.266 4043.909
## Jan 2018       2505.389 2133.691 2877.087 1936.926 3073.852
## Feb 2018       2486.847 2117.874 2855.821 1922.551 3051.144
## Mar 2018       2461.246 2096.041 2826.450 1902.714 3019.778
## Apr 2018       2783.652 2370.572 3196.733 2151.900 3415.404
## May 2018       2779.003 2366.573 3191.434 2148.245 3409.761
## Jun 2018       2824.055 2404.894 3243.216 2183.004 3465.106
## Jul 2018       3397.556 2893.215 3901.897 2626.233 4168.879
## Aug 2018       3563.432 3034.403 4092.462 2754.351 4372.513
## Sep 2018       3387.427 2884.460 3890.394 2618.205 4156.649
## Oct 2018       3836.337 3266.634 4406.041 2965.051 4707.623
Atrain = A[1:48]
Atest = A[49:58]

Quarterly

Aquarterly <- aggregate(A, nfrequency=4)
Aquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012 3636 3539 4459 4344
## 2013 3744 4649 5940 6332
## 2014 4251 5153 6380 7589
## 2015 5223 5985 7808 8124
## 2016 6123 7287 8380
ADataA <- window(Aquarterly)
AfitA <- ets(ADataA)
summary(AfitA)
## ETS(M,A,M) 
## 
## Call:
##  ets(y = ADataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     beta  = 1e-04 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 3678.1501 
##     b = 210.4404 
##     s=1.14 1.1048 0.9198 0.8354
## 
##   sigma:  0.0627
## 
##     AIC    AICc     BIC 
## 296.483 316.483 304.983 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -20.25647 318.4145 263.9886 -1.095917 5.166931 0.2841438
##                   ACF1
## Training set 0.1368467
ADecomp <- decompose(Aquarterly)
ADecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012 3636 3539 4459 4344
## 2013 3744 4649 5940 6332
## 2014 4251 5153 6380 7589
## 2015 5223 5985 7808 8124
## 2016 6123 7287 8380     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -1090.0521  -477.5000   655.9479   911.6042
## 2013 -1090.0521  -477.5000   655.9479   911.6042
## 2014 -1090.0521  -477.5000   655.9479   911.6042
## 2015 -1090.0521  -477.5000   655.9479   911.6042
## 2016 -1090.0521  -477.5000   655.9479           
## 
## $trend
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2012       NA       NA 4008.000 4160.250
## 2013 4484.125 4917.750 5229.625 5356.000
## 2014 5474.000 5686.125 5964.750 6190.250
## 2015 6472.750 6718.125 6897.500 7172.750
## 2016 7407.000       NA       NA         
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA -204.94792 -727.85417
## 2013  349.92708  208.75000   54.42708   64.39583
## 2014 -132.94792  -55.62500 -240.69792  487.14583
## 2015 -159.69792 -255.62500  254.55208   39.64583
## 2016 -193.94792         NA         NA           
## 
## $figure
## [1] -1090.0521  -477.5000   655.9479   911.6042
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
forecast(AfitA)
##         Point Forecast    Lo 80     Hi 80    Lo 95     Hi 95
## 2016 Q4       8989.612 8267.773  9711.452 7885.654 10093.571
## 2017 Q1       6763.226 6220.159  7306.293 5932.676  7593.776
## 2017 Q2       7639.931 7026.467  8253.395 6701.718  8578.143
## 2017 Q3       9409.621 8654.056 10165.186 8254.084 10565.158
## 2017 Q4       9949.029 9150.151 10747.907 8727.251 11170.808
## 2018 Q1       7466.274 6866.753  8065.794 6549.387  8383.161
## 2018 Q2       8413.997 7738.377  9089.616 7380.725  9447.268
## 2018 Q3      10339.437 9509.210 11169.664 9069.714 11609.160

A Line

R-squared: 0.7019 p-value: 4.622e-06 m = 237 int. = 3362

fit.A <- tslm(Aquarterly ~ trend)
a <- forecast(fit.A, h=5,level=c(80,95))
plot(a, ylab="Demand",
  xlab="t")
lines(fitted(fit.A),col="blue")

summary(fit.A)
## 
## Call:
## tslm(formula = Aquarterly ~ trend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1270.91  -639.26    32.78   700.09  1380.74 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3362.7      410.5   8.192 2.64e-07 ***
## trend          237.1       36.0   6.586 4.62e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 859.6 on 17 degrees of freedom
## Multiple R-squared:  0.7184, Adjusted R-squared:  0.7019 
## F-statistic: 43.38 on 1 and 17 DF,  p-value: 4.622e-06

SS02CLR7284

MNA 7% quarterly

Monthly

B <- ts( c(468,538,687,932,1162,1067,1131,1201,1183,1082,793,505,498,382,401,752,955,878,999,1053,1007,1283,753,396,397,381,422,742,1028,1168,1216,1179,1329,1161,575,622,347,296,566,820,919,1379,1159,1132,1119,1238,904,699,512,471,744,789,943,1341,973,1255,1146,1045
), 
        start =c(2012, 1), frequency = 12)

BData <- window(B)
Bfit <- ets(BData)
summary(Bfit)
## ETS(M,N,A) 
## 
## Call:
##  ets(y = BData) 
## 
##   Smoothing parameters:
##     alpha = 0.1999 
##     gamma = 0.0016 
## 
##   Initial states:
##     l = 923.9891 
##     s=-292.0386 -96.8391 334.8276 331.2985 286.2546 268.5247
##            302.8817 126.1503 -78.3819 -299.3737 -452.0562 -431.2479
## 
##   sigma:  0.1271
## 
##      AIC     AICc      BIC 
## 802.9122 814.3407 833.8188 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -6.318946 106.2753 86.34946 -2.110883 11.21386 0.6453412
##                     ACF1
## Training set -0.04292431
plot(Bfit)

plot(forecast(Bfit,h=8),
  ylab="Forecasted Demand")

forecast(Bfit)
##          Point Forecast    Lo 80     Hi 80    Lo 95     Hi 95
## Nov 2016       753.9034 631.0569  876.7499 566.0259  941.7809
## Dec 2016       558.6669 464.3280  653.0057 414.3881  702.9456
## Jan 2017       419.5618 344.5710  494.5526 304.8733  534.2503
## Feb 2017       398.6583 325.4471  471.8695 286.6914  510.6251
## Mar 2017       551.3268 454.4618  648.1919 403.1845  699.4692
## Apr 2017       772.4956 640.2631  904.7282 570.2634  974.7279
## May 2017       976.9179 810.7093 1143.1265 722.7238 1231.1121
## Jun 2017      1153.5547 956.9647 1350.1448 852.8961 1454.2133
## Jul 2017      1118.9171 923.9954 1313.8387 820.8101 1417.0240
## Aug 2017      1137.1131 936.0229 1338.2033 829.5722 1444.6540
## Sep 2017      1181.7198 970.5532 1392.8864 858.7684 1504.6713
## Oct 2017      1185.3213 970.0919 1400.5507 856.1563 1514.4863
## Nov 2017       753.9034 593.8151  913.9917 509.0695  998.7373
## Dec 2017       558.6669 419.2275  698.1062 345.4128  771.9210
## Jan 2018       419.5618 292.3752  546.7484 225.0467  614.0769
## Feb 2018       398.6583 272.4659  524.8506 205.6637  591.6528
## Mar 2018       551.3268 410.0455  692.6082 335.2557  767.3980
## Apr 2018       772.4956 604.9358  940.0554 516.2350 1028.7562
## May 2018       976.9179 781.4143 1172.4215 677.9210 1275.9149
## Jun 2018      1153.5547 931.6278 1375.4817 814.1468 1492.9627
## Jul 2018      1118.9171 898.4471 1339.3870 781.7374 1456.0968
## Aug 2018      1137.1131 911.1555 1363.0707 791.5408 1482.6854
## Sep 2018      1181.7198 946.7656 1416.6741 822.3884 1541.0513
## Oct 2018      1185.3213 946.7037 1423.9389 820.3872 1550.2554

Quarterly

Bquarterly <- aggregate(B, nfrequency=4)
Bquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012 1693 3161 3515 2380
## 2013 1281 2585 3059 2432
## 2014 1200 2938 3724 2358
## 2015 1209 3118 3410 2841
## 2016 1727 3073 3374
BDataA <- window(Bquarterly)
BfitA <- ets(BDataA)
summary(BfitA)
## ETS(M,N,A) 
## 
## Call:
##  ets(y = BDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.7887 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 2658.7423 
##     s=-51.2047 859.2664 391.8974 -1199.959
## 
##   sigma:  0.0859
## 
##      AIC     AICc      BIC 
## 273.0032 283.1850 279.6143 
## 
## Training set error measures:
##                     ME     RMSE      MAE        MPE     MAPE      MASE
## Training set -6.595736 218.2399 187.1359 -0.3109325 7.245141 0.6598585
##                     ACF1
## Training set -0.08106083
BDecomp <- decompose(Bquarterly)
BDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012 1693 3161 3515 2380
## 2013 1281 2585 3059 2432
## 2014 1200 2938 3724 2358
## 2015 1209 3118 3410 2841
## 2016 1727 3073 3374     
## 
## $seasonal
##             Qtr1        Qtr2        Qtr3        Qtr4
## 2012 -1196.58594   384.50781   867.32031   -55.24219
## 2013 -1196.58594   384.50781   867.32031   -55.24219
## 2014 -1196.58594   384.50781   867.32031   -55.24219
## 2015 -1196.58594   384.50781   867.32031   -55.24219
## 2016 -1196.58594   384.50781   867.32031            
## 
## $trend
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2012       NA       NA 2635.750 2512.250
## 2013 2383.250 2332.750 2329.125 2363.125
## 2014 2490.375 2564.250 2556.125 2579.750
## 2015 2563.000 2584.125 2709.250 2768.375
## 2016 2758.250       NA       NA         
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA   11.92969  -77.00781
## 2013   94.33594 -132.25781 -137.44531  124.11719
## 2014  -93.78906  -10.75781  300.55469 -166.50781
## 2015 -157.41406  149.36719 -166.57031  127.86719
## 2016  165.33594         NA         NA           
## 
## $figure
## [1] -1196.58594   384.50781   867.32031   -55.24219
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(BDecomp)

forecast(BfitA)
##         Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
## 2016 Q4       2508.700 2232.4335 2784.967 2086.1869 2931.213
## 2017 Q1       1359.973 1094.9236 1625.022  954.6151 1765.330
## 2017 Q2       2951.792 2542.1925 3361.391 2325.3637 3578.220
## 2017 Q3       3419.159 2899.1941 3939.125 2623.9411 4214.378
## 2017 Q4       2508.700 1966.1619 3051.238 1678.9596 3338.440
## 2018 Q1       1359.973  822.1228 1897.823  537.4022 2182.543
## 2018 Q2       2951.792 2329.0569 3574.527 1999.4010 3904.183
## 2018 Q3       3419.159 2718.1651 4120.154 2347.0811 4491.238

B Line

Adjusted R-squared: -0.02699
p-value: 0.4777 m = 25.05 int. = 2332.56

fit.B <- tslm(Bquarterly ~ trend)
b <- forecast(fit.B, h=5,level=c(80,95))
plot(b, ylab="Demand",
  xlab="t")
lines(fitted(fit.B),col="blue")

summary(fit.B)
## 
## Call:
## tslm(formula = Bquarterly ~ trend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1449.2  -469.9   107.7   558.3  1115.9 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2332.56     393.42   5.929 1.65e-05 ***
## trend          25.05      34.51   0.726    0.478    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 823.8 on 17 degrees of freedom
## Multiple R-squared:  0.03007,    Adjusted R-squared:  -0.02699 
## F-statistic: 0.527 on 1 and 17 DF,  p-value: 0.4777

SS06S6T100144

MAN quarterly, MAPE = 26%

Monthly

C <- ts(c(104,105,99,94,116,113,140,134,97,95,115,61,185,122,125,126,36,85,249,198,185,284,328,392,314,235,120,206,198,332,200,458,437,441,338,330,316,300,294,321,238,415,652,424,469,414,637,612,605,487,478,575,682,784,653,903,612,590
), 
        start = c(2012, 1), frequency = 12)
CData <- window(C)
Cfit <- ets(CData)
summary(Cfit)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = CData) 
## 
##   Smoothing parameters:
##     alpha = 0.2046 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 111.6516 
##     b = 8.5027 
## 
##   sigma:  0.3268
## 
##      AIC     AICc      BIC 
## 766.5066 767.6605 776.8089 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 6.206277 95.77837 75.41451 -16.69307 34.00243 0.5016728
##                   ACF1
## Training set 0.2603513
plot(Cfit)

plot(forecast(Cfit,h=8),
  ylab="Forecasted Demand")

forecast(Cfit)
##          Point Forecast    Lo 80     Hi 80    Lo 95    Hi 95
## Nov 2016       685.6805 398.5074  972.8536 246.4871 1124.874
## Dec 2016       694.2192 396.9600  991.4783 239.6005 1148.838
## Jan 2017       702.7579 395.5120 1010.0037 232.8659 1172.650
## Feb 2017       711.2965 394.1511 1028.4420 226.2644 1196.329
## Mar 2017       719.8352 392.8666 1046.8039 219.7798 1219.891
## Apr 2017       728.3739 391.6490 1065.0988 213.3976 1243.350
## May 2017       736.9126 390.4901 1083.3351 207.1051 1266.720
## Jun 2017       745.4513 389.3824 1101.5202 200.8909 1290.012
## Jul 2017       753.9899 388.3193 1119.6606 194.7449 1313.235
## Aug 2017       762.5286 387.2949 1137.7624 188.6581 1336.399
## Sep 2017       771.0673 386.3038 1155.8308 182.6223 1359.512
## Oct 2017       779.6060 385.3412 1173.8708 176.6300 1382.582
## Nov 2017       788.1447 384.4027 1191.8866 170.6747 1405.615
## Dec 2017       796.6834 383.4844 1209.8823 164.7501 1428.617
## Jan 2018       805.2220 382.5826 1227.8615 158.8508 1451.593
## Feb 2018       813.7607 381.6939 1245.8275 152.9715 1474.550
## Mar 2018       822.2994 380.8153 1263.7835 147.1078 1497.491
## Apr 2018       830.8381 379.9441 1281.7321 141.2552 1520.421
## May 2018       839.3768 379.0775 1299.6761 135.4097 1543.344
## Jun 2018       847.9154 378.2132 1317.6177 129.5678 1566.263
## Jul 2018       856.4541 377.3490 1335.5593 123.7260 1589.182
## Aug 2018       864.9928 376.4828 1353.5028 117.8812 1612.104
## Sep 2018       873.5315 375.6127 1371.4503 112.0304 1635.033
## Oct 2018       882.0702 374.7369 1389.4034 106.1709 1657.969

Quarterly

Cquarterly <- aggregate(C, nfrequency=4)
Cquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  308  323  371  271
## 2013  432  247  632 1004
## 2014  669  736 1095 1109
## 2015  910  974 1545 1663
## 2016 1570 2041 2168
CDataA <- window(Cquarterly)
CfitA <- ets(CDataA)
summary(CfitA)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = CDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.1564 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 164.7408 
##     b = 77.5099 
## 
##   sigma:  0.2613
## 
##      AIC     AICc      BIC 
## 268.5289 273.1443 273.2511 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 50.27912 238.6125 194.4384 -8.492323 26.31539 0.4614104
##                   ACF1
## Training set 0.3468974
CDecomp <- decompose(Cquarterly)
CDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  308  323  371  271
## 2013  432  247  632 1004
## 2014  669  736 1095 1109
## 2015  910  974 1545 1663
## 2016 1570 2041 2168     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012  -88.09115 -180.53906  130.37760  138.25260
## 2013  -88.09115 -180.53906  130.37760  138.25260
## 2014  -88.09115 -180.53906  130.37760  138.25260
## 2015  -88.09115 -180.53906  130.37760  138.25260
## 2016  -88.09115 -180.53906  130.37760           
## 
## $trend
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2012       NA       NA  333.750  339.750
## 2013  362.875  487.125  608.375  699.125
## 2014  818.125  889.125  932.375  992.250
## 2015 1078.250 1203.750 1355.500 1571.375
## 2016 1782.625       NA       NA         
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA  -93.12760 -207.00260
## 2013  157.21615  -59.58594 -106.75260  166.62240
## 2014  -61.03385   27.41406   32.24740  -21.50260
## 2015  -80.15885  -49.21094   59.12240  -46.62760
## 2016 -124.53385         NA         NA           
## 
## $figure
## [1]  -88.09115 -180.53906  130.37760  138.25260
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(CDecomp)

forecast(CfitA)
##         Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
## 2016 Q4       1864.010 1239.713 2488.306  909.2308 2818.789
## 2017 Q1       1941.615 1283.519 2599.711  935.1437 2948.087
## 2017 Q2       2019.221 1327.350 2711.091  961.0956 3077.346
## 2017 Q3       2096.826 1371.176 2822.476  987.0407 3206.611
## 2017 Q4       2174.431 1414.974 2933.889 1012.9417 3335.921
## 2018 Q1       2252.037 1458.722 3045.351 1038.7672 3465.307
## 2018 Q2       2329.642 1502.404 3156.880 1064.4910 3594.794
## 2018 Q3       2407.248 1546.005 3268.490 1090.0909 3724.405

C Line R-squared: 0.7019

Adjusted R-squared: 0.8665 p-value: 4.599e-09 m = 100.3 int. = -52

fit.C <- tslm(Cquarterly ~ trend)
c <- forecast(fit.C, h=5,level=c(80,95))
plot(c, ylab="Demand",
  xlab="t")
lines(fitted(fit.C),col="blue")

summary(fit.C)
## 
## Call:
## tslm(formula = Cquarterly ~ trend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -378.15 -132.35  -17.44  148.32  314.34 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -52.070    105.365  -0.494    0.627    
## trend        100.302      9.241  10.854  4.6e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 220.6 on 17 degrees of freedom
## Multiple R-squared:  0.8739, Adjusted R-squared:  0.8665 
## F-statistic: 117.8 on 1 and 17 DF,  p-value: 4.599e-09

3/16 CLEAR 96X130

MNA quarterly MAPE = 7% ###Monthly

D <- ts(c(278,366,381,393,498,441,381,534,453,534,391,288,302,319,384,372,381,371,407,365,532,445,367,266,250,266,168,323,360,329,432,395,471,549,295,302,219,179,321,389,299,488,449,509,499,561,466,373,262,337,408,437,420,704,492,726,768,519
), 
        start = c(2012, 1), frequency = 12)
DData <- window(D)
Dfit <- ets(DData)
summary(Dfit)
## ETS(M,A,A) 
## 
## Call:
##  ets(y = DData) 
## 
##   Smoothing parameters:
##     alpha = 0.0377 
##     beta  = 0.0377 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 448.7472 
##     b = -3.5758 
##     s=-70.4183 2.9142 145.0808 112.7078 74.4152 40.423
##            35.6681 -16.7346 -13.6575 -69.228 -109.8366 -131.3342
## 
##   sigma:  0.1496
## 
##      AIC     AICc      BIC 
## 738.4683 753.7683 773.4958 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 7.506794 62.19073 48.89058 0.257838 12.50341 0.6134661
##                    ACF1
## Training set -0.2634204
plot(Dfit)

plot(forecast(Dfit,h=8),
  ylab="Forecasted Demand")

forecast(Dfit)
##          Point Forecast    Lo 80     Hi 80    Lo 95     Hi 95
## Nov 2016       584.4604 472.3720  696.5488 413.0359  755.8848
## Dec 2016       523.9533 422.6559  625.2507 369.0323  678.8743
## Jan 2017       475.8636 382.3101  569.4171 332.7858  618.9414
## Feb 2017       510.1922 408.3453  612.0391 354.4308  665.9536
## Mar 2017       563.6246 449.4956  677.7537 389.0793  738.1700
## Apr 2017       632.0166 502.4387  761.5946 433.8443  830.1890
## May 2017       641.7712 506.5636  776.9788 434.9890  848.5534
## Jun 2017       707.0115 555.8197  858.2032 475.7837  938.2393
## Jul 2017       724.5660 564.8276  884.3044 480.2672  968.8649
## Aug 2017       771.4058 597.4355  945.3761 505.3412 1037.4704
## Sep 2017       822.5213 632.8941 1012.1485 532.5115 1112.5311
## Oct 2017       867.6835 662.5580 1072.8091 553.9710 1181.3960
## Nov 2017       738.3658 542.2742  934.4574 438.4696 1038.2620
## Dec 2017       677.8587 477.8936  877.8238 372.0385  983.6789
## Jan 2018       629.7690 422.1774  837.3607 312.2850  947.2531
## Feb 2018       664.0976 438.4351  889.7601 318.9766 1009.2187
## Mar 2018       717.5301 471.1788  963.8813 340.7683 1094.2918
## Apr 2018       785.9221 516.7538 1055.0903 374.2648 1197.5794
## May 2018       795.6766 509.2791 1082.0741 357.6694 1233.6838
## Jun 2018       860.9169 550.9452 1170.8886 386.8561 1334.9778
## Jul 2018       878.4714 549.0920 1207.8509 374.7290 1382.2139
## Aug 2018       925.3113 572.9450 1277.6775 386.4135 1464.2090
## Sep 2018       976.4267 599.9923 1352.8611 400.7200 1552.1335
## Oct 2018      1021.5889 620.9405 1422.2373 408.8501 1634.3278
DDecomp <- decompose(D)
DDecomp$seasonal
##              Jan         Feb         Mar         Apr         May
## 2012 -124.091435 -110.247685  -70.528935  -13.653935  -16.921296
## 2013 -124.091435 -110.247685  -70.528935  -13.653935  -16.921296
## 2014 -124.091435 -110.247685  -70.528935  -13.653935  -16.921296
## 2015 -124.091435 -110.247685  -70.528935  -13.653935  -16.921296
## 2016 -124.091435 -110.247685  -70.528935  -13.653935  -16.921296
##              Jun         Jul         Aug         Sep         Oct
## 2012   30.189815   40.627315   74.596065  112.616898  145.377315
## 2013   30.189815   40.627315   74.596065  112.616898  145.377315
## 2014   30.189815   40.627315   74.596065  112.616898  145.377315
## 2015   30.189815   40.627315   74.596065  112.616898  145.377315
## 2016   30.189815   40.627315   74.596065  112.616898  145.377315
##              Nov         Dec
## 2012    3.231481  -71.195602
## 2013    3.231481  -71.195602
## 2014    3.231481  -71.195602
## 2015    3.231481  -71.195602
## 2016
plot(stl(D, "periodic"))

Quarterly

#for Chris to rememberdiff(D)
#For Chris to remenber DPct <-  D/lag(D,1) - 1
Dquarterly <- aggregate(D, nfrequency=4)
Dquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012 1025 1332 1368 1213
## 2013 1005 1124 1304 1078
## 2014  684 1012 1298 1146
## 2015  719 1176 1457 1400
## 2016 1007 1561 1986
DDataD <- window(Dquarterly)
DfitD <- ets(DDataD)
summary(DfitD)
## ETS(M,N,A) 
## 
## Call:
##  ets(y = DDataD) 
## 
##   Smoothing parameters:
##     alpha = 0.9984 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 1227.5876 
##     s=45.5845 230.6325 27.7691 -303.9861
## 
##   sigma:  0.0946
## 
##      AIC     AICc      BIC 
## 248.1520 258.3338 254.7630 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 27.80315 117.4353 94.87023 1.361505 7.727523 0.5178506
##                    ACF1
## Training set 0.06665997
plot(forecast(DfitD, h = 1), ylab= "Quarterly Demand")

forecast(DfitD)
##         Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
## 2016 Q4       1800.633 1582.2490 2019.016 1466.6437 2134.621
## 2017 Q1       1451.051 1170.0887 1732.014 1021.3561 1880.746
## 2017 Q2       1782.811 1427.4028 2138.218 1239.2613 2326.360
## 2017 Q3       1985.687 1555.2338 2416.140 1327.3656 2644.009
## 2017 Q4       1800.633 1316.4216 2284.843 1060.0959 2541.169
## 2018 Q1       1451.051  933.9634 1968.139  660.2336 2241.869
## 2018 Q2       1782.811 1220.2859 2345.335  922.5033 2643.118
## 2018 Q3       1985.687 1371.6008 2599.773 1046.5232 2924.851
DDDecomp <- decompose(Dquarterly)
DDDecomp$seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -309.49219   10.44531  226.57031   72.47656
## 2013 -309.49219   10.44531  226.57031   72.47656
## 2014 -309.49219   10.44531  226.57031   72.47656
## 2015 -309.49219   10.44531  226.57031   72.47656
## 2016 -309.49219   10.44531  226.57031
forecast(DfitD)
##         Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
## 2016 Q4       1800.633 1582.2490 2019.016 1466.6437 2134.621
## 2017 Q1       1451.051 1170.0887 1732.014 1021.3561 1880.746
## 2017 Q2       1782.811 1427.4028 2138.218 1239.2613 2326.360
## 2017 Q3       1985.687 1555.2338 2416.140 1327.3656 2644.009
## 2017 Q4       1800.633 1316.4216 2284.843 1060.0959 2541.169
## 2018 Q1       1451.051  933.9634 1968.139  660.2336 2241.869
## 2018 Q2       1782.811 1220.2859 2345.335  922.5033 2643.118
## 2018 Q3       1985.687 1371.6008 2599.773 1046.5232 2924.851

D Line

Adjusted R-squared: 0.07152 p-value: 0.1408 int = 1020.11 m = 18.49

fit.D <- tslm(Dquarterly ~ trend)
d <- forecast(fit.D, h=5,level=c(80,95))
plot(d, ylab="Demand",
  xlab="t")
lines(fitted(fit.D),col="blue")

summary(fit.D)
## 
## Call:
## tslm(formula = Dquarterly ~ trend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -541.47 -105.26   -7.04  157.01  614.59 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1020.11     136.46   7.475 9.08e-07 ***
## trend          18.49      11.97   1.545    0.141    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 285.7 on 17 degrees of freedom
## Multiple R-squared:  0.1231, Adjusted R-squared:  0.07152 
## F-statistic: 2.386 on 1 and 17 DF,  p-value: 0.1408

SS10CLR96130

ANN quarterly MAPE = 13.5%

Monthly

E <- ts(c(196,238,282,250,309,269,215,314,185,242,188,151,196,292,244,199,320,384,272,263,225,215,265,219,202,236,274,234,275,298,320,362,426,408,244,280,211,253,410,449,408,450,441,462,470,396,468,544,293,415,467,402,490,598,501,380,529,439
), start = c(2012, 1), frequency = 12)
EData <- window(E)
Efit <- ets(EData)
summary(Efit)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = EData) 
## 
##   Smoothing parameters:
##     alpha = 0.4002 
## 
##   Initial states:
##     l = 225.0354 
## 
##   sigma:  0.2254
## 
##      AIC     AICc      BIC 
## 731.9426 732.3870 738.1239 
## 
## Training set error measures:
##                    ME     RMSE      MAE        MPE     MAPE      MASE
## Training set 10.39883 70.30633 56.64873 -0.7338025 18.21559 0.7006835
##                    ACF1
## Training set 0.07894876
plot(Efit)

plot(forecast(Efit,h=8),
  ylab="Forecasted Demand")

forecast(Efit)
##          Point Forecast    Lo 80    Hi 80      Lo 95    Hi 95
## Nov 2016       466.4319 331.6989 601.1649 260.375526 672.4882
## Dec 2016       466.4319 320.8000 612.0638 243.707084 689.1567
## Jan 2017       466.4319 310.5820 622.2818 228.080010 704.7837
## Feb 2017       466.4319 300.9181 631.9456 213.300427 719.5633
## Mar 2017       466.4319 291.7159 641.1479 199.226777 733.6370
## Apr 2017       466.4319 282.9052 649.9586 185.751993 747.1118
## May 2017       466.4319 274.4316 658.4322 172.792793 760.0710
## Jun 2017       466.4319 266.2518 666.6119 160.282898 772.5809
## Jul 2017       466.4319 258.3307 674.5331 148.168547 784.6952
## Aug 2017       466.4319 250.6392 682.2246 136.405425 796.4583
## Sep 2017       466.4319 243.1531 689.7106 124.956501 807.9073
## Oct 2017       466.4319 235.8520 697.0117 113.790453 819.0733
## Nov 2017       466.4319 228.7184 704.1453 102.880517 829.9832
## Dec 2017       466.4319 221.7372 711.1266  92.203605 840.6601
## Jan 2018       466.4319 214.8951 717.9686  81.739644 851.1241
## Feb 2018       466.4319 208.1809 724.6829  71.471045 861.3927
## Mar 2018       466.4319 201.5842 731.2796  61.382302 871.4815
## Apr 2018       466.4319 195.0961 737.7676  51.459657 881.4041
## May 2018       466.4319 188.7086 744.1551  41.690840 891.1729
## Jun 2018       466.4319 182.4145 750.4492  32.064853 900.7989
## Jul 2018       466.4319 176.2074 756.6564  22.571789 910.2920
## Aug 2018       466.4319 170.0812 762.7825  13.202692 919.6611
## Sep 2018       466.4319 164.0309 768.8329   3.949432 928.9143
## Oct 2018       466.4319 158.0514 774.8124  -5.195401 938.0592

Quarterly

Equarterly <- aggregate(E, nfrequency=4)
Equarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  716  828  714  581
## 2013  732  903  760  699
## 2014  712  807 1108  932
## 2015  874 1307 1373 1408
## 2016 1175 1490 1410
EDataA <- window(Equarterly)
EfitA <- ets(EDataA)
summary(EfitA)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = EDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.6338 
## 
##   Initial states:
##     l = 738.8147 
## 
##   sigma:  170.5384
## 
##      AIC     AICc      BIC 
## 257.2248 258.8248 260.0582 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE    MAPE      MASE
## Training set 55.44331 170.5384 134.9438 3.377817 13.5182 0.7038097
##                     ACF1
## Training set -0.07172848
EDecomp <- decompose(Equarterly)
EDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  716  828  714  581
## 2013  732  903  760  699
## 2014  712  807 1108  932
## 2015  874 1307 1373 1408
## 2016 1175 1490 1410     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -115.32552   78.82031   77.64323  -41.13802
## 2013 -115.32552   78.82031   77.64323  -41.13802
## 2014 -115.32552   78.82031   77.64323  -41.13802
## 2015 -115.32552   78.82031   77.64323  -41.13802
## 2016 -115.32552   78.82031   77.64323           
## 
## $trend
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2012       NA       NA  711.750  723.125
## 2013  738.250  758.750  771.000  756.500
## 2014  788.000  860.625  910.000  992.750
## 2015 1088.375 1181.000 1278.125 1338.625
## 2016 1366.125       NA       NA         
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA  -75.39323 -100.98698
## 2013  109.07552   65.42969  -88.64323  -16.36198
## 2014   39.32552 -132.44531  120.35677  -19.61198
## 2015  -99.04948   47.17969   17.23177  110.51302
## 2016  -75.79948         NA         NA           
## 
## $figure
## [1] -115.32552   78.82031   77.64323  -41.13802
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
forecast(EfitA)
##         Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
## 2016 Q4       1406.455 1187.9010 1625.008 1072.2057 1740.704
## 2017 Q1       1406.455 1147.7035 1665.206 1010.7288 1802.181
## 2017 Q2       1406.455 1112.9608 1699.949  957.5945 1855.315
## 2017 Q3       1406.455 1081.9163 1730.993  910.1160 1902.793
## 2017 Q4       1406.455 1053.5926 1759.317  866.7987 1946.111
## 2018 Q1       1406.455 1027.3793 1785.530  826.7089 1986.201
## 2018 Q2       1406.455 1002.8650 1810.044  789.2175 2023.692
## 2018 Q3       1406.455  979.7568 1833.153  753.8765 2059.033

E Line

Adjusted R-squared: 0.07152 p-value: 0.1408 Intercept = 523.351 m = 45.186

fit.E <- tslm(Equarterly ~ trend)
e <- forecast(fit.E, h=5,level=c(80,95))
plot(e, ylab="Demand",
  xlab="t")
lines(fitted(fit.E),col="blue")

summary(fit.E)
## 
## Call:
## tslm(formula = Equarterly ~ trend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -236.77 -128.34   28.12  149.25  214.28 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  523.351     74.397   7.035 2.01e-06 ***
## trend         45.186      6.525   6.925 2.45e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 155.8 on 17 degrees of freedom
## Multiple R-squared:  0.7383, Adjusted R-squared:  0.7229 
## F-statistic: 47.95 on 1 and 17 DF,  p-value: 2.455e-06

1/2 CLEAR 102X130

MAN quarterly MAPE = 16%

Monthly

FF <- ts(c(168,81,136,168,148,103,101,194,256,232,160,130,190,231,215,297,222,336,326,436,221,185,255,217,160,153,198,230,263,307,319,330,433,384,275,358,248,307,364,390,384,429,622,498,485,423,291,320,325,465,440,416,475,509,642,677,437,414
), start = c(2012,1), frequency = 12)
FFData <- window(FF)
FFfit <- ets(FFData)
summary(FFfit)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = FFData) 
## 
##   Smoothing parameters:
##     alpha = 0.6804 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 109.641 
##     b = 11.8682 
## 
##   sigma:  0.2475
## 
##      AIC     AICc      BIC 
## 741.7355 742.8893 752.0377 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -8.820438 79.38034 61.34659 -8.419909 23.66188 0.6193905
##                   ACF1
## Training set 0.1044451
plot(FFfit)

plot(forecast(FFfit,h=8),
  ylab="Forecasted Demand")

forecast(FFfit)
##          Point Forecast      Lo 80     Hi 80       Lo 95     Hi 95
## Nov 2016       460.5441 314.474335  606.6138  237.149678  683.9385
## Dec 2016       472.3612 290.885315  653.8370  194.817809  749.9045
## Jan 2017       484.1782 271.095019  697.2614  158.295587  810.0608
## Feb 2017       495.9953 253.534285  738.4563  125.183186  866.8074
## Mar 2017       507.8123 237.402879  778.2218   94.256753  921.3679
## Apr 2017       519.6294 222.229762  817.0291   64.795896  974.4629
## May 2017       531.4465 207.711138  855.1818   36.336002 1026.5570
## Jun 2017       543.2635 193.638113  892.8890    8.557591 1077.9695
## Jul 2017       555.0806 179.860014  930.3012  -18.769769 1128.9310
## Aug 2017       566.8977 166.264032  967.5313  -45.818605 1179.6139
## Sep 2017       578.7147 152.763123 1004.6663  -72.722040 1230.1515
## Oct 2017       590.5318 139.288418 1041.7752  -99.585400 1280.6490
## Nov 2017       602.3489 125.784254 1078.9135 -126.493813 1331.1915
## Dec 2017       614.1659 112.204803 1116.1271 -153.517367 1381.8492
## Jan 2018       625.9830  98.511717 1153.4543 -180.714712 1432.6807
## Feb 2018       637.8001  84.672431 1190.9277 -208.135650 1483.7358
## Mar 2018       649.6171  70.658927 1228.5753 -235.823030 1535.0573
## Apr 2018       661.4342  56.446808 1266.4216 -263.814167 1586.6825
## May 2018       673.2513  42.014588 1304.4879 -292.141919 1638.6444
## Jun 2018       685.0683  27.343154 1342.7935 -320.835518 1690.9722
## Jul 2018       696.8854  12.415334 1381.3554 -349.921223 1743.6920
## Aug 2018       708.7024  -2.784432 1420.1893 -379.422836 1796.8277
## Sep 2018       720.5195 -18.270369 1459.3094 -409.362109 1850.4011
## Oct 2018       732.3366 -34.055582 1498.7287 -439.759085 1904.4322

Quarterly

FFquarterly <- aggregate(FF, nfrequency=4)
FFquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  385  419  551  522
## 2013  636  855  983  657
## 2014  511  800 1082 1017
## 2015  919 1203 1605 1034
## 2016 1230 1400 1756
FFDataA <- window(FFquarterly)
FFfitA <- ets(FFDataA)
summary(FFfitA)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = FFDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.0012 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 314.7573 
##     b = 64.0285 
## 
##   sigma:  0.1787
## 
##      AIC     AICc      BIC 
## 258.3000 262.9154 263.0222 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE    MASE
## Training set -30.24154 181.0643 140.5132 -6.581949 16.03091 0.54002
##                    ACF1
## Training set 0.06677017
FFDecomp <- decompose(FFquarterly)
FFDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  385  419  551  522
## 2013  636  855  983  657
## 2014  511  800 1082 1017
## 2015  919 1203 1605 1034
## 2016 1230 1400 1756     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -148.01823   35.61719  208.60677  -96.20573
## 2013 -148.01823   35.61719  208.60677  -96.20573
## 2014 -148.01823   35.61719  208.60677  -96.20573
## 2015 -148.01823   35.61719  208.60677  -96.20573
## 2016 -148.01823   35.61719  208.60677           
## 
## $trend
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2012       NA       NA  500.625  586.500
## 2013  695.000  765.875  767.125  744.625
## 2014  750.125  807.500  903.500 1004.875
## 2015 1120.625 1188.125 1229.125 1292.625
## 2016 1336.125       NA       NA         
## 
## $random
##             Qtr1        Qtr2        Qtr3        Qtr4
## 2012          NA          NA -158.231771   31.705729
## 2013   89.018229   53.507812    7.268229    8.580729
## 2014  -91.106771  -43.117188  -30.106771  108.330729
## 2015  -53.606771  -20.742188  167.268229 -162.419271
## 2016   41.893229          NA          NA            
## 
## $figure
## [1] -148.01823   35.61719  208.60677  -96.20573
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(FFDecomp)

forecast(FFfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       1594.178 1229.038 1959.317 1035.745 2152.610
## 2017 Q1       1658.149 1278.357 2037.941 1077.307 2238.991
## 2017 Q2       1722.120 1327.675 2116.565 1118.869 2325.371
## 2017 Q3       1786.091 1376.993 2195.188 1160.430 2411.752
## 2017 Q4       1850.062 1426.312 2273.812 1201.992 2498.132
## 2018 Q1       1914.033 1475.630 2352.436 1243.553 2584.513
## 2018 Q2       1978.004 1524.948 2431.060 1285.115 2670.894
## 2018 Q3       2041.975 1574.266 2509.684 1326.676 2757.275

FF Line

Adjusted R-squared: 0.7718 p-value: 4.597e-07 Intercept = 304.333 m = 62.014

fit.FF <- tslm(FFquarterly ~ trend)
ff <- forecast(fit.FF, h=5,level=c(80,95))
plot(ff, ylab="Demand",
  xlab="t")
lines(fitted(fit.FF),col="blue")

summary(fit.FF)
## 
## Call:
## tslm(formula = FFquarterly ~ trend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -351.46 -126.52   -9.36   78.07  370.46 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  304.333     89.898   3.385  0.00352 ** 
## trend         62.014      7.885   7.865  4.6e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 188.2 on 17 degrees of freedom
## Multiple R-squared:  0.7844, Adjusted R-squared:  0.7718 
## F-statistic: 61.86 on 1 and 17 DF,  p-value: 4.597e-07

1/8 ENEG ADV LOW-E 72 X 84

ANN monthly MAPE = 27%

Monthly

G <- ts(c(243,209,163,181,123,121,268,275,360,149,174,346,395,234,243,
 185,218,183,281,331,434,428,375,473,536,333,292,259,193,281,299,190,292,365,522,457,398), start = c(2013,10), frequency = 12)
GData <- window(G)
Gfit <- ets(GData)
summary(Gfit)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = GData) 
## 
##   Smoothing parameters:
##     alpha = 0.8439 
## 
##   Initial states:
##     l = 236.7237 
## 
##   sigma:  89.5984
## 
##      AIC     AICc      BIC 
## 472.2589 472.9862 477.0917 
## 
## Training set error measures:
##                    ME     RMSE     MAE      MPE     MAPE      MASE
## Training set 5.490188 89.59838 72.8848 -4.62779 27.07409 0.7857352
##                    ACF1
## Training set 0.03798041
plot(Gfit)

plot(forecast(Gfit,h=8),
  ylab="Forecasted Demand")

forecast(Gfit)
##          Point Forecast      Lo 80    Hi 80       Lo 95     Hi 95
## Nov 2016       408.1467 293.321764 522.9716  232.537112  583.7563
## Dec 2016       408.1467 257.900060 558.3933  178.364291  637.9291
## Jan 2017       408.1467 229.363759 586.9296  134.721786  681.5716
## Feb 2017       408.1467 204.793247 611.5002   97.144430  719.1490
## Mar 2017       408.1467 182.887041 633.4064   63.641779  752.6516
## Apr 2017       408.1467 162.930059 653.3633   33.120209  783.1732
## May 2017       408.1467 144.479319 671.8141    4.902237  811.3912
## Jun 2017       408.1467 127.237862 689.0555  -21.466295  837.7597
## Jul 2017       408.1467 110.995119 705.2983  -46.307428  862.6008
## Aug 2017       408.1467  95.595346 720.6981  -69.859349  886.1528
## Sep 2017       408.1467  80.919506 735.3739  -92.304108  908.5975
## Oct 2017       408.1467  66.874194 749.4192 -113.784559  930.0780
## Nov 2017       408.1467  53.384512 762.9089 -134.415248  950.7087
## Dec 2017       408.1467  40.389311 775.9041 -154.289693  970.5831
## Jan 2018       408.1467  27.837899 788.4555 -173.485422  989.7788
## Feb 2018       408.1467  15.687694 800.6057 -192.067556 1008.3610
## Mar 2018       408.1467   3.902518 812.3909 -210.091427 1026.3848
## Apr 2018       408.1467  -7.548676 823.8421 -227.604517 1043.8979
## May 2018       408.1467 -18.692770 834.9862 -244.647937 1060.9413
## Jun 2018       408.1467 -29.553220 845.8466 -261.257563 1077.5510
## Jul 2018       408.1467 -40.150642 856.4440 -277.464922 1093.7583
## Aug 2018       408.1467 -50.503269 866.7967 -293.297898 1109.5913
## Sep 2018       408.1467 -60.627319 876.9207 -308.781297 1125.0747
## Oct 2018       408.1467 -70.537296 886.8307 -323.937299 1140.2307

Quarterly

gquarterly <- aggregate(G, nfrequency=4)
gquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2013                 615
## 2014  425  903  669  872
## 2015  586 1046 1276 1161
## 2016  733  781 1344
gDataA <- window(gquarterly)
gfitA <- ets(gDataA)
summary(gfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = gDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 867.6016 
## 
##   sigma:  0.3187
## 
##      AIC     AICc      BIC 
## 170.7473 173.7473 172.2020 
## 
## Training set error measures:
##                      ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.04080992 276.4478 232.7689 -11.51011 30.55139 0.9613583
##                   ACF1
## Training set 0.1748691
gDecomp <- decompose(gquarterly)
gDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2013                 615
## 2014  425  903  669  872
## 2015  586 1046 1276 1161
## 2016  733  781 1344     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2013                                   100.23438
## 2014 -291.32812  123.23438   67.85938  100.23438
## 2015 -291.32812  123.23438   67.85938  100.23438
## 2016 -291.32812  123.23438   67.85938           
## 
## $trend
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2013                                  NA
## 2014       NA  685.125  737.375  775.375
## 2015  869.125  981.125 1035.625 1020.875
## 2016  996.250       NA       NA         
## 
## $random
##             Qtr1        Qtr2        Qtr3        Qtr4
## 2013                                              NA
## 2014          NA   94.640625 -136.234375   -3.609375
## 2015    8.203125  -58.359375  172.515625   39.890625
## 2016   28.078125          NA          NA            
## 
## $figure
## [1]  100.23438 -291.32812  123.23438   67.85938
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(gDecomp)

forecast(gfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       867.6017 513.2971 1221.906 325.7396 1409.464
## 2017 Q1       867.6017 513.2971 1221.906 325.7396 1409.464
## 2017 Q2       867.6017 513.2971 1221.906 325.7396 1409.464
## 2017 Q3       867.6017 513.2971 1221.906 325.7396 1409.464
## 2017 Q4       867.6017 513.2971 1221.906 325.7396 1409.464
## 2018 Q1       867.6017 513.2971 1221.906 325.7396 1409.464
## 2018 Q2       867.6017 513.2971 1221.906 325.7396 1409.464
## 2018 Q3       867.6017 513.2971 1221.906 325.7396 1409.464

G Line

Adjusted R-squared: 0.2691 p-value: 0.000595 Intercept = 187.351 m = 5.515

fit.G <- tslm(G ~ trend)
g <- forecast(fit.G, h=5,level=c(80,95))
plot(g, ylab="Demand",
  xlab="t")
lines(fitted(fit.G),col="blue")

summary(fit.G)
## 
## Call:
## tslm(formula = G ~ trend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -173.83  -74.02  -11.13   60.80  210.78 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  187.351     31.838   5.885  1.1e-06 ***
## trend          5.515      1.461   3.775 0.000595 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 94.88 on 35 degrees of freedom
## Multiple R-squared:  0.2894, Adjusted R-squared:  0.2691 
## F-statistic: 14.25 on 1 and 35 DF,  p-value: 0.000595

1/4 SOLARBAN 60 100 X 144

MAN quarterly MAPE = 23%

Monthly

H <- ts(c(69,140,81,50,35,56,63,180,141,122,56,153,97,81,43,91,154,63,186,89,67,121,164,259,156,185,84,122,92,96,184,144,191,201,172,224,269,151,152,149,134,212,246,165,232,382,358,336,194,232,272,288,289,239,248,284,298,398
), 
        start = c(2012, 1), frequency = 12)
HData <- window(H)
Hfit <- ets(HData)
summary(Hfit)
## ETS(A,A,N) 
## 
## Call:
##  ets(y = HData) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 66.3181 
##     b = 3.7355 
## 
##   sigma:  55.3721
## 
##      AIC     AICc      BIC 
## 711.1385 712.2924 721.4407 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -4.621318 55.37211 44.55253 -20.06258 36.69403 0.6341016
##                   ACF1
## Training set 0.3045034
plot(Hfit)

plot(forecast(Hfit,h=8),
  ylab="Forecasted Demand")

forecast(Hfit)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2016       285.0587 214.0964 356.0209 176.5313 393.5860
## Dec 2016       288.7673 217.8051 359.7296 180.2400 397.2947
## Jan 2017       292.4760 221.5138 363.4383 183.9487 401.0034
## Feb 2017       296.1847 225.2225 367.1470 187.6574 404.7121
## Mar 2017       299.8934 228.9312 370.8557 191.3660 408.4208
## Apr 2017       303.6021 232.6398 374.5644 195.0747 412.1295
## May 2017       307.3108 236.3485 378.2731 198.7833 415.8382
## Jun 2017       311.0195 240.0572 381.9818 202.4920 419.5470
## Jul 2017       314.7282 243.7658 385.6905 206.2006 423.2557
## Aug 2017       318.4369 247.4745 389.3992 209.9093 426.9645
## Sep 2017       322.1455 251.1831 393.1080 213.6179 430.6732
## Oct 2017       325.8542 254.8917 396.8167 217.3265 434.3820
## Nov 2017       329.5629 258.6004 400.5255 221.0350 438.0908
## Dec 2017       333.2716 262.3090 404.2343 224.7436 441.7996
## Jan 2018       336.9803 266.0176 407.9430 228.4522 445.5085
## Feb 2018       340.6890 269.7262 411.6518 232.1607 449.2173
## Mar 2018       344.3977 273.4347 415.3606 235.8692 452.9262
## Apr 2018       348.1064 277.1433 419.0695 239.5777 456.6351
## May 2018       351.8151 280.8518 422.7783 243.2862 460.3440
## Jun 2018       355.5238 284.5604 426.4871 246.9946 464.0529
## Jul 2018       359.2324 288.2689 430.1960 250.7031 467.7618
## Aug 2018       362.9411 291.9774 433.9049 254.4115 471.4708
## Sep 2018       366.6498 295.6859 437.6138 258.1198 475.1798
## Oct 2018       370.3585 299.3943 441.3227 261.8282 478.8888

Quarterly

Hquarterly <- aggregate(H, nfrequency=4)
Hquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  290  141  384  331
## 2013  221  308  342  544
## 2014  425  310  519  597
## 2015  572  495  643 1076
## 2016  698  816  830
HDataA <- window(Hquarterly)
HfitA <- ets(HDataA)
summary(HfitA)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = HDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 237.4554 
##     b = 26.4435 
## 
##   sigma:  0.2559
## 
##      AIC     AICc      BIC 
## 248.7225 253.3379 253.4447 
## 
## Training set error measures:
##                     ME     RMSE    MAE       MPE     MAPE      MASE
## Training set 0.5849946 129.5789 90.138 -11.16418 23.42515 0.5416947
##                    ACF1
## Training set 0.07730516
HDecomp <- decompose(Hquarterly)
HDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  290  141  384  331
## 2013  221  308  342  544
## 2014  425  310  519  597
## 2015  572  495  643 1076
## 2016  698  816  830     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012  -51.27865 -101.07031   10.59635  141.75260
## 2013  -51.27865 -101.07031   10.59635  141.75260
## 2014  -51.27865 -101.07031   10.59635  141.75260
## 2015  -51.27865 -101.07031   10.59635  141.75260
## 2016  -51.27865 -101.07031   10.59635           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA 277.875 290.125
## 2013 305.750 327.125 379.250 405.000
## 2014 427.375 456.125 481.125 522.625
## 2015 561.250 636.625 712.250 768.125
## 2016 831.625      NA      NA        
## 
## $random
##             Qtr1        Qtr2        Qtr3        Qtr4
## 2012          NA          NA   95.528646 -100.877604
## 2013  -33.471354   81.945312  -47.846354   -2.752604
## 2014   48.903646  -45.054688   27.278646  -67.377604
## 2015   62.028646  -40.554688  -79.846354  166.122396
## 2016  -82.346354          NA          NA            
## 
## $figure
## [1]  -51.27865 -101.07031   10.59635  141.75260
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(HDecomp)

forecast(HfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       765.7661 514.5936 1016.939 381.6310 1149.901
## 2017 Q1       792.2107 532.3644 1052.057 394.8100 1189.611
## 2017 Q2       818.6553 550.1351 1087.176 407.9890 1229.322
## 2017 Q3       845.0999 567.9058 1122.294 421.1681 1269.032
## 2017 Q4       871.5445 585.6765 1157.413 434.3471 1308.742
## 2018 Q1       897.9891 603.4471 1192.531 447.5260 1348.452
## 2018 Q2       924.4337 621.2178 1227.650 460.7050 1388.162
## 2018 Q3       950.8783 638.9884 1262.768 473.8839 1427.873

H line

Adjusted R-squared: 0.6205
p-value: 1.333e-13 Intercept = 46.949 m = 4.2180

fit.H <- tslm(H ~ trend)
h <- forecast(fit.H, h=5,level=c(80,95))
plot(h, ylab="Demand",
  xlab="t")
lines(fitted(fit.H),col="blue")

summary(fit.H)
## 
## Call:
## tslm(formula = H ~ trend)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -85.89 -37.78  -4.77  24.33 141.02 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  46.9492    14.7402   3.185  0.00237 ** 
## trend         4.2180     0.4346   9.706 1.33e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 55.4 on 56 degrees of freedom
## Multiple R-squared:  0.6272, Adjusted R-squared:  0.6205 
## F-statistic: 94.21 on 1 and 56 DF,  p-value: 1.333e-13

Monthly

I <- ts(c(157,149,168,223,230,249,293,317,269,333,209,144,184,151,144,211,253,225,270,214,177,350,213,164,112,115,100,216,226,274,270,260,276,302,216,177,118,101,153,181,233,273,318,298,298,356,298,197,145,143,217,208,243,311,349,306,251,236
), 
        start = c(2012, 1), frequency = 12)
IData <- window(I)
Ifit <- ets(IData)
summary(Ifit)
## ETS(M,N,A) 
## 
## Call:
##  ets(y = IData) 
## 
##   Smoothing parameters:
##     alpha = 0.1761 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 232.0982 
##     s=-49.4809 12.0742 100.7175 27.2913 51.4044 68.476
##            38.8245 9.8169 -15.3121 -68.2627 -95.186 -80.363
## 
##   sigma:  0.1287
## 
##      AIC     AICc      BIC 
## 651.3483 662.7769 682.2550 
## 
## Training set error measures:
##                      ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -0.3444858 30.11825 22.99002 -1.813708 10.81167 0.6580841
##                   ACF1
## Training set 0.1595263
plot(Ifit)

plot(forecast(Ifit,h=8),
  ylab="Forecasted Demand")

forecast(Ifit)
##          Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
## Nov 2016       240.6538 200.96452 280.3430 179.95431 301.3532
## Dec 2016       179.0979 148.73199 209.4639 132.65722 225.5387
## Jan 2017       148.2168 122.24213 174.1914 108.49200 187.9415
## Feb 2017       133.3958 109.31206 157.4795  96.56290 170.2287
## Mar 2017       160.3175 131.84998 188.7850 116.78017 203.8548
## Apr 2017       213.2673 176.24665 250.2879 156.64912 269.8854
## May 2017       238.3987 196.94608 279.8513 175.00239 301.7950
## Jun 2017       267.4063 220.86385 313.9487 196.22578 338.5868
## Jul 2017       297.0598 245.26328 348.8562 217.84388 376.2756
## Aug 2017       279.9853 230.07872 329.8919 203.65977 356.3108
## Sep 2017       255.8717 208.89673 302.8467 184.02967 327.7137
## Oct 2017       329.2912 270.71210 387.8703 239.70221 418.8801
## Nov 2017       240.6538 194.27908 287.0284 169.72981 311.5777
## Dec 2017       179.0979 140.39707 217.7988 119.91007 238.2858
## Jan 2018       148.2168 112.85221 183.5813  94.13135 202.3022
## Feb 2018       133.3958  99.39118 167.4004  81.39023 185.4013
## Mar 2018       160.3175 123.07512 197.5599 103.36018 217.2748
## Apr 2018       213.2673 169.13753 257.3970 145.77667 280.7579
## May 2018       238.3987 190.48689 286.3105 165.12391 311.6735
## Jun 2018       267.4063 215.02589 319.7866 187.29739 347.5151
## Jul 2018       297.0598 239.95752 354.1620 209.72943 384.3901
## Aug 2018       279.9853 224.58855 335.3821 195.26328 364.7073
## Sep 2018       255.8717 203.09838 308.6450 175.16187 336.5816
## Oct 2018       329.2912 265.96542 392.6169 232.44278 426.1396

Quarterly

Iquarterly <- aggregate(I, nfrequency=4)
Iquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  474  702  879  686
## 2013  479  689  661  727
## 2014  327  716  806  695
## 2015  372  687  914  851
## 2016  505  762  906
IDataA <- window(Iquarterly)
IfitA <- ets(IDataA)
summary(IfitA)
## ETS(M,N,A) 
## 
## Call:
##  ets(y = IDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.3971 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 690.2762 
##     s=64.2873 147.8217 34.67 -246.779
## 
##   sigma:  0.0951
## 
##      AIC     AICc      BIC 
## 226.4914 236.6733 233.1025 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 7.032893 65.63119 52.08215 0.137992 8.028488 0.6581569
##                     ACF1
## Training set -0.05764806
IDecomp <- decompose(Iquarterly)
IDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  474  702  879  686
## 2013  479  689  661  727
## 2014  327  716  806  695
## 2015  372  687  914  851
## 2016  505  762  906     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -254.43750   41.78125  145.37500   67.28125
## 2013 -254.43750   41.78125  145.37500   67.28125
## 2014 -254.43750   41.78125  145.37500   67.28125
## 2015 -254.43750   41.78125  145.37500   67.28125
## 2016 -254.43750   41.78125  145.37500           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA 685.875 684.875
## 2013 656.000 633.875 620.000 604.375
## 2014 625.875 640.000 641.625 643.625
## 2015 653.500 686.500 722.625 748.625
## 2016 757.000      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA   47.75000  -66.15625
## 2013   77.43750   13.34375 -104.37500   55.34375
## 2014  -44.43750   34.21875   19.00000  -15.90625
## 2015  -27.06250  -41.28125   46.00000   35.09375
## 2016    2.43750         NA         NA           
## 
## $figure
## [1] -254.43750   41.78125  145.37500   67.28125
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(IDecomp)

forecast(IfitA)
##         Point Forecast    Lo 80     Hi 80    Lo 95     Hi 95
## 2016 Q4       807.6320 709.2275  906.0365 657.1353  958.1287
## 2017 Q1       496.5638 424.4427  568.6848 386.2641  606.8634
## 2017 Q2       778.0108 672.5952  883.4265 616.7915  939.2301
## 2017 Q3       891.1666 767.2758 1015.0573 701.6920 1080.6412
## 2017 Q4       807.6320 684.6534  930.6107 619.5524  995.7116
## 2018 Q1       496.5638 393.3662  599.7613 338.7368  654.3908
## 2018 Q2       778.0108 649.2928  906.7289 581.1536  974.8681
## 2018 Q3       891.1666 746.9026 1035.4306 670.5339 1111.7993

Monthly

REMOVED 21 MOS OF DATA 15,1,8,4,4,20,32,2,16,3,5,3,3,1,1,10,3,15,9,7,13,

J <- ts(c(90,229,205,171,126,128,161,197,117,297,240,197,227,266,323,105,199,176,180,255,264,244,179,271,245,162,339,225,125,309,130,192,230,236,323,168,192
), 
        start = c(2013, 10), frequency = 12)
JData <- window(J)
Jfit <- ets(JData)
summary(Jfit)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = JData) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 208.7103 
## 
##   sigma:  0.3053
## 
##      AIC     AICc      BIC 
## 447.0174 447.7447 451.8502 
## 
## Training set error measures:
##                      ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.03825653 63.70378 52.68033 -11.20274 29.71262 0.7272271
##                    ACF1
## Training set -0.1003191
plot(Jfit)

plot(forecast(Jfit,h=8),
  ylab="Forecasted Demand")

forecast(Jfit)
##          Point Forecast   Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2016       208.7104 127.064 290.3569 83.84296 333.5779
## Dec 2016       208.7104 127.064 290.3569 83.84296 333.5779
## Jan 2017       208.7104 127.064 290.3569 83.84296 333.5779
## Feb 2017       208.7104 127.064 290.3569 83.84296 333.5779
## Mar 2017       208.7104 127.064 290.3569 83.84296 333.5779
## Apr 2017       208.7104 127.064 290.3569 83.84296 333.5779
## May 2017       208.7104 127.064 290.3569 83.84296 333.5779
## Jun 2017       208.7104 127.064 290.3569 83.84296 333.5779
## Jul 2017       208.7104 127.064 290.3569 83.84296 333.5779
## Aug 2017       208.7104 127.064 290.3569 83.84296 333.5779
## Sep 2017       208.7104 127.064 290.3569 83.84295 333.5779
## Oct 2017       208.7104 127.064 290.3569 83.84295 333.5779
## Nov 2017       208.7104 127.064 290.3569 83.84295 333.5779
## Dec 2017       208.7104 127.064 290.3569 83.84295 333.5779
## Jan 2018       208.7104 127.064 290.3569 83.84295 333.5779
## Feb 2018       208.7104 127.064 290.3569 83.84295 333.5779
## Mar 2018       208.7104 127.064 290.3569 83.84295 333.5779
## Apr 2018       208.7104 127.064 290.3569 83.84295 333.5779
## May 2018       208.7104 127.064 290.3569 83.84295 333.5779
## Jun 2018       208.7104 127.064 290.3569 83.84295 333.5779
## Jul 2018       208.7104 127.064 290.3569 83.84295 333.5779
## Aug 2018       208.7104 127.064 290.3569 83.84295 333.5779
## Sep 2018       208.7104 127.064 290.3569 83.84295 333.5779
## Oct 2018       208.7104 127.064 290.3569 83.84295 333.5779

Quarterly

Jquarterly <- aggregate(J, nfrequency=4)
Jquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2013                 524
## 2014  425  475  734  816
## 2015  480  699  694  746
## 2016  659  552  727
JDataA <- window(Jquarterly)
JfitA <- ets(JDataA)
summary(JfitA)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = JDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 627.1647 
## 
##   sigma:  123.759
## 
##      AIC     AICc      BIC 
## 151.4589 154.4589 152.9137 
## 
## Training set error measures:
##                     ME    RMSE      MAE       MPE     MAPE     MASE
## Training set 0.4374141 123.759 113.7315 -4.286211 19.63951 0.874858
##                   ACF1
## Training set 0.1295097
JDecomp <- decompose(Jquarterly)
JDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2013                 524
## 2014  425  475  734  816
## 2015  480  699  694  746
## 2016  659  552  727     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2013                                102.3750
## 2014 -113.5000  -43.6875   54.8125  102.3750
## 2015 -113.5000  -43.6875   54.8125  102.3750
## 2016 -113.5000  -43.6875   54.8125          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2013                              NA
## 2014      NA 576.000 619.375 654.250
## 2015 677.250 663.500 677.125 681.125
## 2016 666.875      NA      NA        
## 
## $random
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2013                                  NA
## 2014       NA -57.3125  59.8125  59.3750
## 2015 -83.7500  79.1875 -37.9375 -37.5000
## 2016 105.6250       NA       NA         
## 
## $figure
## [1]  102.3750 -113.5000  -43.6875   54.8125
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(JDecomp)

forecast(JfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       627.1653 468.5618 785.7688 384.6022 869.7284
## 2017 Q1       627.1653 468.5618 785.7688 384.6021 869.7284
## 2017 Q2       627.1653 468.5618 785.7688 384.6021 869.7284
## 2017 Q3       627.1653 468.5618 785.7688 384.6021 869.7284
## 2017 Q4       627.1653 468.5618 785.7688 384.6021 869.7284
## 2018 Q1       627.1653 468.5618 785.7688 384.6021 869.7284
## 2018 Q2       627.1653 468.5618 785.7688 384.6021 869.7284
## 2018 Q3       627.1653 468.5618 785.7688 384.6021 869.7284
K <- ts(c(51,118,171,200,160,137,155,142,180,181,196,216,235,239,205,210,171,201,221,169,235,182,209,239,249,385,274,217), 
        start = c(2014, 7), frequency = 12)
       
KData <- window(K)
Kfit <- ets(KData)
summary(Kfit)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = KData) 
## 
##   Smoothing parameters:
##     alpha = 9e-04 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 126.5158 
##     b = 4.9157 
## 
##   sigma:  0.2093
## 
##      AIC     AICc      BIC 
## 310.6141 313.3414 317.2751 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.3765047 40.10694 28.41424 -6.218273 17.93991 0.5380212
##                   ACF1
## Training set 0.2144315
plot(Kfit)

plot(forecast(Kfit,h=8),
  ylab="Forecasted Demand")

forecast(Kfit)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2016       269.0649 196.9039 341.2259 158.7041 379.4256
## Dec 2016       273.9817 200.5020 347.4614 161.6042 386.3592
## Jan 2017       278.8984 204.1000 353.6968 164.5042 393.2927
## Feb 2017       283.8152 207.6981 359.9323 167.4042 400.2263
## Mar 2017       288.7320 211.2962 366.1678 170.3041 407.1599
## Apr 2017       293.6488 214.8942 372.4033 173.2041 414.0935
## May 2017       298.5656 218.4923 378.6388 176.1040 421.0271
## Jun 2017       303.4823 222.0903 384.8744 179.0040 427.9607
## Jul 2017       308.3991 225.6883 391.1099 181.9039 434.8944
## Aug 2017       313.3159 229.2863 397.3455 184.8038 441.8280
## Sep 2017       318.2327 232.8843 403.5810 187.7036 448.7617
## Oct 2017       323.1495 236.4823 409.8166 190.6035 455.6954
## Nov 2017       328.0662 240.0803 416.0522 193.5033 462.6292
## Dec 2017       332.9830 243.6782 422.2878 196.4031 469.5629
## Jan 2018       337.8998 247.2762 428.5234 199.3029 476.4967
## Feb 2018       342.8166 250.8741 434.7591 202.2027 483.4305
## Mar 2018       347.7334 254.4720 440.9947 205.1024 490.3643
## Apr 2018       352.6502 258.0699 447.2304 208.0021 497.2982
## May 2018       357.5669 261.6677 453.4661 210.9018 504.2321
## Jun 2018       362.4837 265.2656 459.7018 213.8014 511.1660
## Jul 2018       367.4005 268.8634 465.9376 216.7011 518.0999
## Aug 2018       372.3173 272.4612 472.1733 219.6007 525.0339
## Sep 2018       377.2341 276.0590 478.4091 222.5002 531.9679
## Oct 2018       382.1508 279.6568 484.6449 225.3997 538.9019

Quarterly

kquarterly <- aggregate(K, nfrequency=4)
kquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2014            340  497
## 2015  477  593  679  582
## 2016  625  630  908
kDataA <- window(kquarterly)
kfitA <- ets(kDataA)
summary(kfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = kDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.6793 
## 
##   Initial states:
##     l = 397.2878 
## 
##   sigma:  0.2376
## 
##      AIC     AICc      BIC 
## 112.2407 117.0407 112.8324 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE    MASE
## Training set 68.73648 123.7605 94.06214 9.215167 15.12356 0.56123
##                    ACF1
## Training set -0.2338792
kDecomp <- decompose(kquarterly)
kDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2014            340  497
## 2015  477  593  679  582
## 2016  625  630  908     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2014                      73.03125 -47.09375
## 2015 -42.09375  16.15625  73.03125 -47.09375
## 2016 -42.09375  16.15625  73.03125          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2014                      NA      NA
## 2015 519.125 572.125 601.250 624.375
## 2016 657.625      NA      NA        
## 
## $random
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2014                         NA       NA
## 2015 -0.03125  4.71875  4.71875  4.71875
## 2016  9.46875       NA       NA         
## 
## $figure
## [1]  73.03125 -47.09375 -42.09375  16.15625
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(kDecomp)

forecast(kfitA)
##         Point Forecast    Lo 80    Hi 80      Lo 95    Hi 95
## 2016 Q4        817.504 568.6104 1066.398 436.854038 1198.154
## 2017 Q1        817.504 513.9507 1121.057 353.259244 1281.749
## 2017 Q2        817.504 466.6086 1168.399 280.855832 1354.152
## 2017 Q3        817.504 423.9086 1211.099 215.551778 1419.456
## 2017 Q4        817.504 384.4509 1250.557 155.206483 1479.802
## 2018 Q1        817.504 347.3955 1287.613  98.535120 1536.473
## 2018 Q2        817.504 312.1917 1322.816  44.695509 1590.313
## 2018 Q3        817.504 278.4555 1356.553  -6.899556 1641.908

Monthly

L <- ts(c(64,186,176,185,186,191,141,72,92,62,64,139,208,162,188,198,194,217,124,89,71,84,53,140,203,214,221,226,262,239,115,100,64,45,97,195,192,257,235,250,275,256,208,134,102,82,173,146,232,263,215,262,261,248
), 
        start = c(2012, 5), frequency = 12)
LData <- window(L)
Lfit <- ets(LData)
summary(Lfit)
## ETS(A,A,A) 
## 
## Call:
##  ets(y = LData) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     beta  = 1e-04 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 114.0429 
##     b = 1.6887 
##     s=-13.6711 -70.6222 -97.4467 -82.0822 -63.081 -13.6397
##            69.1101 77.0645 59.7065 50.1901 55.6766 28.7951
## 
##   sigma:  23.6311
## 
##      AIC     AICc      BIC 
## 590.9618 607.9618 624.7746 
## 
## Training set error measures:
##                     ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 0.8834436 23.63106 17.46351 -2.20327 15.02224 0.5924615
##                     ACF1
## Training set -0.06401832
plot(Lfit)

plot(forecast(Lfit,h=8),
  ylab="Forecasted Demand")

forecast(Lfit)
##          Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
## Nov 2016       193.5460 163.2616 223.8305 147.23001 239.8621
## Dec 2016       145.7979 115.5135 176.0824  99.48191 192.1140
## Jan 2017       128.4905  98.2061 158.7749  82.17449 174.8066
## Feb 2017       114.8193  84.5349 145.1038  68.50329 161.1354
## Mar 2017       143.3373 113.0528 173.6217  97.02121 189.6533
## Apr 2017       201.9816 171.6972 232.2661 155.66556 248.2977
## May 2017       246.1370 215.8526 276.4215 199.82093 292.4531
## Jun 2017       274.7159 244.4315 305.0004 228.39986 321.0320
## Jul 2017       270.9200 240.6356 301.2045 224.60392 317.2362
## Aug 2017       282.1328 251.8483 312.4173 235.81669 328.4490
## Sep 2017       301.1805 270.8960 331.4650 254.86435 347.4967
## Oct 2017       294.9199 264.6354 325.2045 248.60370 341.2361
## Nov 2017       213.8671 183.5825 244.1517 167.55086 260.1834
## Dec 2017       166.1190 135.8344 196.4036 119.80270 212.4353
## Jan 2018       148.8116 118.5270 179.0963 102.49523 195.1280
## Feb 2018       135.1404 104.8557 165.4251  88.82397 181.4569
## Mar 2018       163.6583 133.3736 193.9431 117.34182 209.9749
## Apr 2018       222.3027 192.0179 252.5875 175.98611 268.6193
## May 2018       266.4581 236.1732 296.7430 220.14140 312.7748
## Jun 2018       295.0370 264.7521 325.3220 248.72024 341.3538
## Jul 2018       291.2411 260.9561 321.5261 244.92421 337.5580
## Aug 2018       302.4539 272.1688 332.7390 256.13689 348.7710
## Sep 2018       321.5016 291.2164 351.7868 275.18444 367.8188
## Oct 2018       315.2410 284.9557 345.5263 268.92368 361.5583

Quarterly

lquarterly <- aggregate(L, nfrequency=4)
lquarterly
## Time Series:
## Start = 2012.33333333333 
## End = 2016.58333333333 
## Frequency = 4 
##  [1] 426 562 305 265 558 609 284 277 638 727 279 337 684 781 444 401 710
## [18] 771
lDataA <- window(lquarterly)
lfitA <- ets(lDataA)
summary(lfitA)
## ETS(A,N,A) 
## 
## Call:
##  ets(y = lDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.6156 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 425.6685 
##     s=-168.0598 -145.1341 197.0304 116.1635
## 
##   sigma:  53.7266
## 
##      AIC     AICc      BIC 
## 209.4474 220.6474 215.6800 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 13.79875 53.72657 41.93349 2.257509 9.793262 0.6988915
##                    ACF1
## Training set 0.01610375
lDecomp <- decompose(lquarterly)
lDecomp
## $x
## Time Series:
## Start = 2012.33333333333 
## End = 2016.58333333333 
## Frequency = 4 
##  [1] 426 562 305 265 558 609 284 277 638 727 279 337 684 781 444 401 710
## [18] 771
## 
## $seasonal
## Time Series:
## Start = 2012.33333333333 
## End = 2016.58333333333 
## Frequency = 4 
##  [1]  137.2891  204.8307 -159.3568 -182.7630  137.2891  204.8307 -159.3568
##  [8] -182.7630  137.2891  204.8307 -159.3568 -182.7630  137.2891  204.8307
## [15] -159.3568 -182.7630  137.2891  204.8307
## 
## $trend
## Time Series:
## Start = 2012.33333333333 
## End = 2016.58333333333 
## Frequency = 4 
##  [1]      NA      NA 406.000 428.375 431.625 430.500 442.000 466.750
##  [9] 480.875 487.750 501.000 513.500 540.875 569.500 580.750 582.750
## [17]      NA      NA
## 
## $random
## Time Series:
## Start = 2012.33333333333 
## End = 2016.58333333333 
## Frequency = 4 
##  [1]         NA         NA  58.356771  19.388021 -10.914062 -26.330729
##  [7]   1.356771  -6.986979  19.835938  34.419271 -62.643229   6.263021
## [13]   5.835938   6.669271  22.606771   1.013021         NA         NA
## 
## $figure
## [1]  137.2891  204.8307 -159.3568 -182.7630
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(lDecomp)

forecast(lfitA)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016.833       433.4396 364.5862 502.2930 328.1375 538.7417
## 2017.083       410.5180 329.6639 491.3722 286.8623 534.1738
## 2017.333       694.7426 603.4487 786.0366 555.1206 834.3647
## 2017.583       775.6072 674.9534 876.2611 621.6705 929.5440
## 2017.833       433.4396 324.2251 542.6541 266.4105 600.4687
## 2018.083       410.5180 293.3668 527.6693 231.3507 589.6854
## 2018.333       694.7426 570.1569 819.3283 504.2052 885.2800
## 2018.583       775.6072 644.0086 907.2059 574.3444 976.8700

Monthly

M <- ts(c(73,79,102,112,122,114,96,125,83,98,80,96,96,101,97,147,145,154,137,122,101,106,92,108,94,133,95,124,145,162,137,123,146,135,96,166,119,125,153,184,175,204,213,150,154,134,148,58,19,29,29,27,42,155,143,184,210,180
), 
        start = c(2012, 1), frequency = 12)
MData <- window(M)
Mfit <- ets(MData)
summary(Mfit)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = MData) 
## 
##   Smoothing parameters:
##     alpha = 0.8564 
## 
##   Initial states:
##     l = 74.3316 
## 
##   sigma:  30.9283
## 
##      AIC     AICc      BIC 
## 639.5796 640.0241 645.7610 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 2.200898 30.92831 22.28927 -5.284683 23.16611 0.5677223
##                     ACF1
## Training set -0.02699559
plot(Mfit)

plot(forecast(Mfit,h=8),
  ylab="Forecasted Demand")

forecast(Mfit)
##          Point Forecast     Lo 80    Hi 80      Lo 95    Hi 95
## Nov 2016       183.6491 144.01288 223.2853 123.030734 244.2675
## Dec 2016       183.6491 131.46504 235.8332 103.840457 263.4578
## Jan 2017       183.6491 121.39700 245.9012  88.442730 278.8555
## Feb 2017       183.6491 112.74444 254.5538  75.209780 292.0884
## Mar 2017       183.6491 105.03856 262.2597  63.424645 303.8736
## Apr 2017       183.6491  98.02338 269.2748  52.695853 314.6024
## May 2017       183.6491  91.54095 275.7573  42.781835 324.5164
## Jun 2017       183.6491  85.48567 281.8125  33.521089 333.7771
## Jul 2017       183.6491  79.78281 287.5154  24.799318 342.4989
## Aug 2017       183.6491  74.37718 292.9210  16.532115 350.7661
## Sep 2017       183.6491  69.22664 298.0716   8.655043 358.6432
## Oct 2017       183.6491  64.29816 303.0001   1.117587 366.1806
## Nov 2017       183.6491  59.56528 307.7329  -6.120726 373.4189
## Dec 2017       183.6491  55.00641 312.2918 -13.092914 380.3911
## Jan 2018       183.6491  50.60367 316.6946 -19.826338 387.1246
## Feb 2018       183.6491  46.34202 320.9562 -26.343964 393.6422
## Mar 2018       183.6491  42.20872 325.0895 -32.665302 399.9635
## Apr 2018       183.6491  38.19282 329.1054 -38.807085 406.1053
## May 2018       183.6491  34.28486 333.0134 -44.783795 412.0820
## Jun 2018       183.6491  30.47657 336.8216 -50.608068 417.9063
## Jul 2018       183.6491  26.76070 340.5375 -56.291006 423.5892
## Aug 2018       183.6491  23.13082 344.1674 -61.842423 429.1406
## Sep 2018       183.6491  19.58124 347.7170 -67.271049 434.5693
## Oct 2018       183.6491  16.10683 351.1914 -72.584689 439.8829

Quarterly

Mquarterly <- aggregate(M, nfrequency=4)
Mquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  254  348  304  274
## 2013  294  446  360  306
## 2014  322  431  406  397
## 2015  397  563  517  340
## 2016   77  224  537
MDataA <- window(Mquarterly)
MfitA <- ets(MDataA)
summary(MfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = MDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.146 
## 
##   Initial states:
##     l = 302.3688 
## 
##   sigma:  0.3339
## 
##      AIC     AICc      BIC 
## 241.0965 242.6965 243.9299 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 21.91731 119.9167 87.44649 -16.40537 39.81236 0.8984228
##                  ACF1
## Training set 0.268795
MDecomp <- decompose(Mquarterly)
MDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  254  348  304  274
## 2013  294  446  360  306
## 2014  322  431  406  397
## 2015  397  563  517  340
## 2016   77  224  537     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012 -87.82812  85.07812  30.42188 -27.67188
## 2013 -87.82812  85.07812  30.42188 -27.67188
## 2014 -87.82812  85.07812  30.42188 -27.67188
## 2015 -87.82812  85.07812  30.42188 -27.67188
## 2016 -87.82812  85.07812  30.42188          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA 300.000 317.250
## 2013 336.500 347.500 355.000 356.625
## 2014 360.500 377.625 398.375 424.250
## 2015 454.625 461.375 414.250 331.875
## 2016 292.000      NA      NA        
## 
## $random
##             Qtr1        Qtr2        Qtr3        Qtr4
## 2012          NA          NA  -26.421875  -15.578125
## 2013   45.328125   13.421875  -25.421875  -22.953125
## 2014   49.328125  -31.703125  -22.796875    0.421875
## 2015   30.203125   16.546875   72.328125   35.796875
## 2016 -127.171875          NA          NA            
## 
## $figure
## [1] -87.82812  85.07812  30.42188 -27.67188
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(MDecomp)

forecast(MfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       363.1727 207.7856 518.5598 125.5287 600.8167
## 2017 Q1       363.1727 205.9554 520.3900 122.7295 603.6159
## 2017 Q2       363.1727 204.1419 522.2035 119.9561 606.3893
## 2017 Q3       363.1727 202.3447 524.0008 117.2074 609.1380
## 2017 Q4       363.1727 200.5631 525.7823 114.4827 611.8627
## 2018 Q1       363.1727 198.7966 527.5488 111.7812 614.5642
## 2018 Q2       363.1727 197.0448 529.3006 109.1020 617.2434
## 2018 Q3       363.1727 195.3072 531.0382 106.4446 619.9008

Monthly

2,26,7,6,3,2,6,9,37,19,11,5,5,15,20,27,26,29,34,54,39,46,38,23

 N <- ts(c(6,24,11,45,35,45,40,79,52,62,30,25,48,52,1,78,70,110,91,125,176,155,130,167,95,19,126,137,150,158,150,210,233,148
), 
        start = c(2014, 1), frequency = 12)
NData <- window(N)
Nfit <- ets(NData)
summary(Nfit)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = NData) 
## 
##   Smoothing parameters:
##     alpha = 0.002 
##     beta  = 0.002 
## 
##   Initial states:
##     l = 5.907 
##     b = 4.8811 
## 
##   sigma:  0.4098
## 
##      AIC     AICc      BIC 
## 362.3696 364.5125 370.0014 
## 
## Training set error measures:
##                       ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -0.02406572 35.67067 25.01267 -255.9237 277.6084 0.4019566
##                   ACF1
## Training set 0.3421183
plot(Nfit)

plot(forecast(Nfit,h=8),
  ylab="Forecasted Demand")

forecast(Nfit)
##          Point Forecast     Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2016       174.4951  82.85932 266.1309 34.35027 314.6399
## Dec 2016       179.3746  85.17447 273.5747 35.30793 323.4413
## Jan 2017       184.2541  87.48818 281.0200 36.26340 332.2448
## Feb 2017       189.1336  89.80009 288.4671 37.21611 341.0511
## Mar 2017       194.0131  92.10984 295.9164 38.16551 349.8607
## Apr 2017       198.8926  94.41709 303.3681 39.11109 358.6741
## May 2017       203.7721  96.72149 310.8227 40.05231 367.4919
## Jun 2017       208.6516  99.02272 318.2805 40.98869 376.3145
## Jul 2017       213.5311 101.32046 325.7418 41.91973 385.1425
## Aug 2017       218.4106 103.61440 333.2068 42.84495 393.9763
## Sep 2017       223.2901 105.90421 340.6760 43.76386 402.8164
## Oct 2017       228.1696 108.18959 348.1497 44.67600 411.6633
## Nov 2017       233.0491 110.47023 355.6280 45.58089 420.5174
## Dec 2017       237.9286 112.74583 363.1114 46.47806 429.3792
## Jan 2018       242.8081 115.01609 370.6002 47.36706 438.2492
## Feb 2018       247.6876 117.28069 378.0946 48.24742 447.1279
## Mar 2018       252.5671 119.53934 385.5949 49.11868 456.0156
## Apr 2018       257.4466 121.79173 393.1016 49.98036 464.9129
## May 2018       262.3261 124.03757 400.6147 50.83202 473.8203
## Jun 2018       267.2056 126.27654 408.1348 51.67318 482.7381
## Jul 2018       272.0852 128.50835 415.6620 52.50338 491.6669
## Aug 2018       276.9647 130.73268 423.1966 53.32215 500.6072
## Sep 2018       281.8442 132.94924 430.7391 54.12902 509.5593
## Oct 2018       286.7237 135.15770 438.2896 54.92353 518.5238

Quarterly

Nquarterly <- aggregate(N, nfrequency=4)
Nquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2014   41  125  171  117
## 2015  101  258  392  452
## 2016  240  445  593
NDataA <- window(Nquarterly)
NfitA <- ets(NDataA)
summary(NfitA)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = NDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 5.4186 
##     b = 43.0232 
## 
##   sigma:  0.3037
## 
##      AIC     AICc      BIC 
## 128.6572 140.6572 130.6467 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 3.271272 82.43401 66.12098 -12.72291 33.45558 0.3627327
##                     ACF1
## Training set -0.01109151
NDecomp <- decompose(Nquarterly)
NDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2014   41  125  171  117
## 2015  101  258  392  452
## 2016  240  445  593     
## 
## $seasonal
##             Qtr1        Qtr2        Qtr3        Qtr4
## 2014 -119.296875    7.703125   70.515625   41.078125
## 2015 -119.296875    7.703125   70.515625   41.078125
## 2016 -119.296875    7.703125   70.515625            
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2014      NA      NA 121.000 145.125
## 2015 189.375 258.875 318.125 358.875
## 2016 407.375      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2014         NA         NA -20.515625 -69.203125
## 2015  30.921875  -8.578125   3.359375  52.046875
## 2016 -48.078125         NA         NA           
## 
## $figure
## [1] -119.296875    7.703125   70.515625   41.078125
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(NDecomp)

forecast(NfitA)
##         Point Forecast    Lo 80     Hi 80    Lo 95     Hi 95
## 2016 Q4       521.6737 318.6506  724.6969 211.1766  832.1708
## 2017 Q1       564.7006 344.9324  784.4688 228.5941  900.8070
## 2017 Q2       607.7274 371.2142  844.2407 246.0116  969.4432
## 2017 Q3       650.7543 397.4959  904.0126 263.4291 1038.0794
## 2017 Q4       693.7811 423.7777  963.7845 280.8466 1106.7157
## 2018 Q1       736.8080 450.0595 1023.5564 298.2640 1175.3519
## 2018 Q2       779.8348 476.3412 1083.3284 315.6814 1243.9882
## 2018 Q3       822.8617 502.6230 1143.1003 333.0988 1312.6245

Monthly

3,8,5,3,22,2,4,3,2,25,2,19,1,7,2,18,12,7,62,43,64,92,57,45,

O <- ts(c(27,70,44,72,78,104,110,73,111,66,51,50,51,28,55,76,96,135,75,92,118,247,156,94,96,71,141,86,124,96,107,104,113,170
), 
        start = c(2014, 1), frequency = 12)
OData <- window(O)
Ofit <- ets(OData)
summary(Ofit)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = OData) 
## 
##   Smoothing parameters:
##     alpha = 0.5771 
## 
##   Initial states:
##     l = 69.3159 
## 
##   sigma:  0.4301
## 
##      AIC     AICc      BIC 
## 370.1040 370.9040 374.6831 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 3.826632 39.60797 30.69276 -8.152196 36.42665 0.7519384
##                      ACF1
## Training set -0.005749268
plot(Ofit)

plot(forecast(Ofit,h=8),
  ylab="Forecasted Demand")

forecast(Ofit)
##          Point Forecast       Lo 80    Hi 80        Lo 95    Hi 95
## Nov 2016       144.3987   64.814343 223.9831   22.6849065 266.1126
## Dec 2016       144.3987   50.413970 238.3835    0.6614362 288.1360
## Jan 2017       144.3987   37.223404 251.5741  -19.5117932 308.3093
## Feb 2017       144.3987   24.801893 263.9956  -38.5088557 327.3063
## Mar 2017       144.3987   12.892984 275.9045  -56.7219598 345.5194
## Apr 2017       144.3987    1.331226 287.4663  -74.4041427 363.2016
## May 2017       144.3987   -9.998152 298.7956  -91.7309313 380.5284
## Jun 2017       144.3987  -21.179242 309.9767 -108.8309331 397.6284
## Jul 2017       144.3987  -32.276395 321.0739 -125.8025637 414.6000
## Aug 2017       144.3987  -43.340652 332.1381 -142.7238842 431.5214
## Sep 2017       144.3987  -54.413748 343.2112 -159.6587240 448.4562
## Oct 2017       144.3987  -65.530723 354.3282 -176.6606694 465.4582
## Nov 2017       144.3987  -76.721680 365.5192 -193.7757619 482.5732
## Dec 2017       144.3987  -88.013024 376.8105 -211.0443814 499.8419
## Jan 2018       144.3987  -99.428338 388.2258 -228.5025975 517.3001
## Feb 2018       144.3987 -110.989038 399.7865 -246.1831621 534.9806
## Mar 2018       144.3987 -122.714855 411.5123 -264.1162528 552.9137
## Apr 2018       144.3987 -134.624211 423.4217 -282.3300412 571.1275
## May 2018       144.3987 -146.734504 435.5320 -300.8511350 589.6486
## Jun 2018       144.3987 -159.062335 447.8598 -319.7049253 608.5024
## Jul 2018       144.3987 -171.623693 460.4212 -338.9158658 627.7134
## Aug 2018       144.3987 -184.434104 473.2316 -358.5076987 647.3052
## Sep 2018       144.3987 -197.508748 486.3062 -378.5036400 667.3011
## Oct 2018       144.3987 -210.862560 499.6600 -398.9265342 687.7240

Quarterly

Oquarterly <- aggregate(O, nfrequency=4)
Oquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2014  141  254  294  167
## 2015  134  307  285  497
## 2016  308  306  324
ODataA <- window(Oquarterly)
OfitA <- ets(ODataA)
summary(OfitA)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = ODataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 274.2472 
## 
##   sigma:  97.7784
## 
##      AIC     AICc      BIC 
## 133.1963 136.6249 134.3900 
## 
## Training set error measures:
##                      ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.04354118 97.77838 72.94132 -15.32799 34.00356 0.8329351
##                   ACF1
## Training set 0.2238666
ODecomp <- decompose(Oquarterly)
ODecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2014  141  254  294  167
## 2015  134  307  285  497
## 2016  308  306  324     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2014 -78.515625  32.109375   8.796875  37.609375
## 2015 -78.515625  32.109375   8.796875  37.609375
## 2016 -78.515625  32.109375   8.796875           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2014      NA      NA 213.125 218.875
## 2015 224.375 264.500 327.500 349.125
## 2016 353.875      NA      NA        
## 
## $random
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2014        NA        NA  72.07812 -89.48438
## 2015 -11.85938  10.39062 -51.29688 110.26562
## 2016  32.64062        NA        NA          
## 
## $figure
## [1] -78.515625  32.109375   8.796875  37.609375
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(ODecomp)

forecast(OfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       274.2472 148.9392 399.5553 82.60512 465.8893
## 2017 Q1       274.2472 148.9392 399.5553 82.60512 465.8893
## 2017 Q2       274.2472 148.9392 399.5553 82.60512 465.8893
## 2017 Q3       274.2472 148.9392 399.5553 82.60512 465.8893
## 2017 Q4       274.2472 148.9392 399.5553 82.60511 465.8893
## 2018 Q1       274.2472 148.9392 399.5553 82.60511 465.8893
## 2018 Q2       274.2472 148.9392 399.5553 82.60511 465.8893
## 2018 Q3       274.2472 148.9392 399.5553 82.60511 465.8893
 P <- ts(c(3,9,50,28,45,30,26,28,115,17,5,36,13,1,76,32,92,86,50,65,37,44,79,19,99,78,96,30,50,109,41,46,97,255,175,140,134,193,85,178,50,144,68,111), 
        start = c(2013, 3), frequency = 12)
PData <- window(P)
Pfit <- ets(PData)
summary(Pfit)
## ETS(M,Ad,N) 
## 
## Call:
##  ets(y = PData) 
## 
##   Smoothing parameters:
##     alpha = 6e-04 
##     beta  = 1e-04 
##     phi   = 0.9673 
## 
##   Initial states:
##     l = 9.862 
##     b = 4.0461 
## 
##   sigma:  0.658
## 
##      AIC     AICc      BIC 
## 503.5232 505.7934 514.2283 
## 
## Training set error measures:
##                  ME     RMSE      MAE       MPE    MAPE      MASE
## Training set 4.2918 45.26952 33.60282 -175.7104 204.759 0.6678821
##                   ACF1
## Training set 0.1494022
plot(Pfit)

plot(forecast(Pfit,h=8),
  ylab="Forecasted Demand")

forecast(Pfit)
##          Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
## Nov 2016       102.8401 16.11376 189.5665 -29.79641 235.4767
## Dec 2016       103.7376 16.25434 191.2208 -30.05649 237.5317
## Jan 2017       104.6057 16.39032 192.8211 -30.30810 239.5196
## Feb 2017       105.4455 16.52185 194.3692 -30.55149 241.4425
## Mar 2017       106.2578 16.64906 195.8666 -30.78695 243.3026
## Apr 2017       107.0436 16.77211 197.3151 -31.01474 245.1020
## May 2017       107.8037 16.89112 198.7163 -31.23511 246.8426
## Jun 2017       108.5390 17.00623 200.0718 -31.44829 248.5263
## Jul 2017       109.2502 17.11756 201.3829 -31.65453 250.1550
## Aug 2017       109.9382 17.22524 202.6512 -31.85406 251.7305
## Sep 2017       110.6038 17.32938 203.8781 -32.04709 253.2546
## Oct 2017       111.2475 17.43011 205.0650 -32.23384 254.7289
## Nov 2017       111.8703 17.52752 206.2130 -32.41451 256.1551
## Dec 2017       112.4727 17.62174 207.3236 -32.58931 257.5346
## Jan 2018       113.0554 17.71285 208.3979 -32.75842 258.8692
## Feb 2018       113.6190 17.80098 209.4371 -32.92204 260.1601
## Mar 2018       114.1643 17.88620 210.4423 -33.08033 261.4089
## Apr 2018       114.6917 17.96862 211.4148 -33.23349 262.6169
## May 2018       115.2019 18.04832 212.3555 -33.38167 263.7854
## Jun 2018       115.6954 18.12540 213.2654 -33.52504 264.9159
## Jul 2018       116.1728 18.19994 214.1457 -33.66375 266.0094
## Aug 2018       116.6346 18.27203 214.9972 -33.79797 267.0672
## Sep 2018       117.0813 18.34173 215.8209 -33.92783 268.0904
## Oct 2018       117.5134 18.40914 216.6177 -34.05348 269.0803

Quarterly

Pquarterly <- aggregate(P, nfrequency=4)
Pquarterly
## Time Series:
## Start = 2013.16666666667 
## End = 2016.41666666667 
## Frequency = 4 
##  [1]  62 103 169  58  90 210 152 142 273 189 184 570 412 372
PDataA <- window(Pquarterly)
PfitA <- ets(PDataA)
summary(PfitA)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = PDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 55.7447 
##     b = 21.6039 
## 
##   sigma:  0.3719
## 
##      AIC     AICc      BIC 
## 167.3220 174.8220 170.5173 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -4.412721 91.24897 67.96411 -23.74178 40.82991 0.5561712
##                    ACF1
## Training set 0.01017069
PDecomp <- decompose(Pquarterly)
PDecomp
## $x
## Time Series:
## Start = 2013.16666666667 
## End = 2016.41666666667 
## Frequency = 4 
##  [1]  62 103 169  58  90 210 152 142 273 189 184 570 412 372
## 
## $seasonal
## Time Series:
## Start = 2013.16666666667 
## End = 2016.41666666667 
## Frequency = 4 
##  [1]  13.067708  -1.869792 -36.869792  25.671875  13.067708  -1.869792
##  [7] -36.869792  25.671875  13.067708  -1.869792 -36.869792  25.671875
## [13]  13.067708  -1.869792
## 
## $trend
## Time Series:
## Start = 2013.16666666667 
## End = 2016.41666666667 
## Frequency = 4 
##  [1]      NA      NA 101.500 118.375 129.625 138.000 171.375 191.625
##  [9] 193.000 250.500 321.375 361.625      NA      NA
## 
## $random
## Time Series:
## Start = 2013.16666666667 
## End = 2016.41666666667 
## Frequency = 4 
##  [1]         NA         NA  104.36979  -86.04688  -52.69271   73.86979
##  [7]   17.49479  -75.29688   66.93229  -59.63021 -100.50521  182.70312
## [13]         NA         NA
## 
## $figure
## [1]  13.067708  -1.869792 -36.869792  25.671875
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(PDecomp)

forecast(PfitA)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016.667       379.6110 198.6769 560.5450 102.8962 656.3257
## 2016.917       401.2086 209.9805 592.4368 108.7504 693.6669
## 2017.167       422.8063 221.2841 624.3286 114.6046 731.0081
## 2017.417       444.4040 232.5876 656.2204 120.4588 768.3492
## 2017.667       466.0017 243.8911 688.1122 126.3129 805.6905
## 2017.917       487.5994 255.1947 720.0041 132.1671 843.0317
## 2018.167       509.1970 266.4982 751.8959 138.0212 880.3729
## 2018.417       530.7947 277.8017 783.7878 143.8753 917.7142
Q <- ts(c(24,3,12,25,1,10,22,14,9,10,9,14,9,5,7,16,42,28,20,20,10,27,25,45, 6,10,14,10,41,103,22,82,101,154,105,104,85,41,75,72,59,135,250,84,130,144,139,94,157,52,70,52,56,73,89,123,139,143), 
        start = c(2012, 1), frequency = 12)
QData <- window(Q)
Qfit <- ets(QData)
summary(Qfit)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = QData) 
## 
##   Smoothing parameters:
##     alpha = 0.8647 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 12.1355 
##     b = 4.9559 
## 
##   sigma:  0.5666
## 
##      AIC     AICc      BIC 
## 616.7643 617.9181 627.0665 
## 
## Training set error measures:
##                     ME    RMSE      MAE       MPE     MAPE      MASE
## Training set -3.112284 39.1548 25.07897 -102.6211 127.4585 0.6949595
##                    ACF1
## Training set -0.3194836
plot(Qfit)

plot(forecast(Qfit,h=8),
  ylab="Forecasted Demand")

forecast(Qfit)
##          Point Forecast        Lo 80     Hi 80       Lo 95     Hi 95
## Nov 2016       147.7859    40.479250  255.0925   -16.32544  311.8972
## Dec 2016       152.7237    -1.143435  306.5908   -82.59578  388.0432
## Jan 2017       157.6615   -40.754542  356.0776  -145.78967  461.1128
## Feb 2017       162.5994   -81.254548  406.4533  -210.34302  535.5418
## Mar 2017       167.5372  -124.078481  459.1529  -278.45050  613.5249
## Apr 2017       172.4750  -170.205584  515.1557  -351.60975  696.5599
## May 2017       177.4129  -220.447558  575.2733  -431.06215  785.8879
## Jun 2017       182.3507  -275.562018  640.2635  -517.96638  882.6678
## Jul 2017       187.2886  -336.307786  710.8849  -613.48295  988.0601
## Aug 2017       192.2264  -403.477049  787.9298  -718.82340 1103.2762
## Sep 2017       197.1642  -477.917292  872.2457  -835.28386 1229.6123
## Oct 2017       202.1021  -560.548532  964.7527  -964.27137 1368.4755
## Nov 2017       207.0399  -652.378511 1066.4583 -1107.32714 1521.4069
## Dec 2017       211.9777  -754.517238 1178.4727 -1266.14877 1690.1042
## Jan 2018       216.9156  -868.191729 1302.0229 -1442.61284 1876.4440
## Feb 2018       221.8534  -994.761479 1438.4683 -1638.79850 2082.5053
## Mar 2018       226.7912 -1135.735075 1589.3176 -1857.01294 2310.5954
## Apr 2018       231.7291 -1292.788262 1756.2464 -2099.81899 2563.2772
## May 2018       236.6669 -1467.783780 1941.1176 -2370.06548 2843.3993
## Jun 2018       241.6048 -1662.793237 2146.0027 -2670.92064 3154.1301
## Jul 2018       246.5426 -1880.121327 2373.2065 -3005.90920 3498.9944
## Aug 2018       251.4804 -2122.332681 2625.2935 -3378.95343 3881.9143
## Sep 2018       256.4183 -2392.281703 2905.1182 -3794.41877 4307.2553
## Oct 2018       261.3561 -2693.145729 3215.8579 -4257.16452 4779.8767

Quarterly

Qquarterly <- aggregate(Q, nfrequency=4)
Qquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   39   36   45   33
## 2013   21   86   50   97
## 2014   30  154  205  363
## 2015  201  266  464  377
## 2016  279  181  351
QDataA <- window(Qquarterly)
QfitA <- ets(QDataA)
summary(QfitA)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = QDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.3757 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 14.2506 
##     b = 13.4415 
## 
##   sigma:  0.5081
## 
##      AIC     AICc      BIC 
## 223.5831 228.1985 228.3053 
## 
## Training set error measures:
##                    ME    RMSE      MAE       MPE     MAPE      MASE
## Training set 7.123587 86.4731 62.95245 -29.61569 58.03064 0.6436856
##                   ACF1
## Training set 0.1128948
QDecomp <- decompose(Qquarterly)
QDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   39   36   45   33
## 2013   21   86   50   97
## 2014   30  154  205  363
## 2015  201  266  464  377
## 2016  279  181  351     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012 -57.11198 -11.88281  27.26302  41.73177
## 2013 -57.11198 -11.88281  27.26302  41.73177
## 2014 -57.11198 -11.88281  27.26302  41.73177
## 2015 -57.11198 -11.88281  27.26302  41.73177
## 2016 -57.11198 -11.88281  27.26302          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  36.000  40.000
## 2013  46.875  55.500  64.625  74.250
## 2014 102.125 154.750 209.375 244.750
## 2015 291.125 325.250 336.750 335.875
## 2016 311.125      NA      NA        
## 
## $random
##             Qtr1        Qtr2        Qtr3        Qtr4
## 2012          NA          NA -18.2630208 -48.7317708
## 2013  31.2369792  42.3828125 -41.8880208 -18.9817708
## 2014 -15.0130208  11.1328125 -31.6380208  76.5182292
## 2015 -33.0130208 -47.3671875  99.9869792  -0.6067708
## 2016  24.9869792          NA          NA            
## 
## $figure
## [1] -57.11198 -11.88281  27.26302  41.73177
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(QDecomp)

forecast(QfitA)
##         Point Forecast     Lo 80    Hi 80       Lo 95     Hi 95
## 2016 Q4       334.0258 116.51419 551.5375    1.370469  666.6812
## 2017 Q1       347.4809 103.33041 591.6314  -25.915055  720.8769
## 2017 Q2       360.9360  90.63328 631.2387  -52.456324  774.3283
## 2017 Q3       374.3911  78.18511 670.5970  -78.616841  827.3989
## 2017 Q4       387.8461  65.82211 709.8701 -104.647105  880.3393
## 2018 Q1       401.3012  53.42577 749.1766 -130.728352  933.3307
## 2018 Q2       414.7563  40.90697 788.6055 -156.996892  986.5094
## 2018 Q3       428.2113  28.19648 828.2262 -183.558593 1039.9812

Monthly

R <- ts(c(34,171,64,48,55,39,33,63,18,45,57,15, 51,33,25,51,34,30,39,34,28,81,78,26, 63,32,36,77,41,31,80,55,72,167,118,142,56,33,187,76,67,73,68,87,113,234,102,108,42,49,99,56,57,42,4,1,112,190), start = c(2012, 1), frequency = 12)
RData <- window(R)
Rfit <- ets(RData)
summary(Rfit)
## ETS(M,N,M) 
## 
## Call:
##  ets(y = RData) 
## 
##   Smoothing parameters:
##     alpha = 0.1086 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 57.3819 
##     s=1.113 1.1706 1.772 0.9405 0.7599 0.7493
##            0.5241 0.7079 0.9426 1.3097 1.2882 0.7222
## 
##   sigma:  0.5212
## 
##      AIC     AICc      BIC 
## 664.2202 675.6488 695.1268 
## 
## Training set error measures:
##                    ME    RMSE      MAE       MPE    MAPE      MASE
## Training set 2.675134 36.8921 27.58712 -138.0946 166.866 0.8187146
##                   ACF1
## Training set 0.1003402
plot(Rfit)

plot(forecast(Rfit,h=8),
  ylab="Forecasted Demand")

forecast(Rfit)
##          Point Forecast     Lo 80     Hi 80      Lo 95     Hi 95
## Nov 2016       88.27899 29.311742 147.24624  -1.903632 178.46161
## Dec 2016       83.92700 27.447763 140.40624  -2.450540 170.30455
## Jan 2017       54.46436 17.541456  91.38726  -2.004348 110.93307
## Feb 2017       97.13003 30.802025 163.45804  -4.309901 198.56996
## Mar 2017       98.75664 30.830917 166.68237  -5.126791 202.64008
## Apr 2017       71.08472 21.842882 120.32657  -4.224175 146.39362
## May 2017       53.38489 16.142912  90.62687  -3.571801 110.34158
## Jun 2017       39.52488 11.759189  67.29058  -2.939081  81.98885
## Jul 2017       56.50011 16.535209  96.46502  -4.620933 117.62116
## Aug 2017       57.29841 16.491634  98.10519  -5.110169 119.70699
## Sep 2017       70.92679 20.072246 121.78133  -6.848524 148.70210
## Oct 2017      133.63447 37.176548 230.09239 -13.885191 281.15413
## Nov 2017       88.27926 24.135516 152.42300  -9.820129 186.37864
## Dec 2017       83.92726 22.545263 145.30925  -9.948401 177.80292
## Jan 2018       54.46452 14.371739  94.55731  -6.852100 115.78115
## Feb 2018       97.13033 25.169729 169.09092 -12.923909 207.18456
## Mar 2018       98.75694 25.124642 172.38924 -13.853944 211.36783
## Apr 2018       71.08494 17.749831 124.42005 -10.484070 152.65395
## May 2018       53.38505 13.079517  93.69059  -8.256944 115.02705
## Jun 2018       39.52500  9.498725  69.55128  -6.396226  85.44623
## Jul 2018       56.50028 13.314535  99.68603  -9.546619 122.54719
## Aug 2018       57.29858 13.235984 101.36118 -10.089347 124.68651
## Sep 2018       70.92701 16.054987 125.79902 -12.992505 154.84652
## Oct 2018      133.63487 29.631038 237.63871 -25.425267 292.69502

Quarterly

Rquarterly <- aggregate(R, nfrequency=4)
Rquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  269  142  114  117
## 2013  109  115  101  185
## 2014  131  149  207  427
## 2015  276  216  268  444
## 2016  190  155  117
RDataA <- window(Rquarterly)
RfitA <- ets(RDataA)
summary(RfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = RDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.9999 
## 
##   Initial states:
##     l = 232.2842 
## 
##   sigma:  0.4273
## 
##      AIC     AICc      BIC 
## 227.6587 229.2587 230.4920 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -6.067994 104.6002 74.87981 -12.11409 35.00823 0.8914263
##                    ACF1
## Training set -0.2295149
RDecomp <- decompose(Rquarterly)
RDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  269  142  114  117
## 2013  109  115  101  185
## 2014  131  149  207  427
## 2015  276  216  268  444
## 2016  190  155  117     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012 -22.53906 -44.07031 -28.10156  94.71094
## 2013 -22.53906 -44.07031 -28.10156  94.71094
## 2014 -22.53906 -44.07031 -28.10156  94.71094
## 2015 -22.53906 -44.07031 -28.10156  94.71094
## 2016 -22.53906 -44.07031 -28.10156          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA 140.500 117.125
## 2013 112.125 119.000 130.250 137.250
## 2014 154.750 198.250 246.625 273.125
## 2015 289.125 298.875 290.250 271.875
## 2016 245.375      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA   1.601562 -94.835938
## 2013  19.414062  40.070312  -1.148438 -46.960938
## 2014  -1.210938  -5.179688 -11.523438  59.164062
## 2015   9.414062 -38.804688   5.851562  77.414062
## 2016 -32.835938         NA         NA           
## 
## $figure
## [1] -22.53906 -44.07031 -28.10156  94.71094
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(RDecomp)

forecast(RfitA)
##         Point Forecast       Lo 80    Hi 80      Lo 95    Hi 95
## 2016 Q4       117.0038   52.925336 181.0823   19.00424 215.0034
## 2017 Q1       117.0038   22.341346 211.6663  -27.76993 261.7775
## 2017 Q2       117.0038   -4.249442 238.2571  -68.43703 302.4446
## 2017 Q3       117.0038  -29.597718 263.6053 -107.20388 341.2115
## 2017 Q4       117.0038  -54.813984 288.8216 -145.76883 379.7764
## 2018 Q1       117.0038  -80.522742 314.5304 -185.08698 419.0946
## 2018 Q2       117.0038 -107.152024 341.1596 -225.81295 459.8206
## 2018 Q3       117.0038 -135.038255 369.0459 -268.46126 502.4689

Monthly

S <- ts(c(91,89,84,77,65,59,73,99,108,167,134,158,191,113,114, 79,46,47,68,78,87,122,90,105,99,109,89,57,69,73,73,60,89,104,109,88,89), start = c(2013, 10), frequency = 12)

SData <- window(S)
Sfit <- ets(SData)
summary(Sfit)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = SData) 
## 
##   Smoothing parameters:
##     alpha = 0.9999 
## 
##   Initial states:
##     l = 86.3414 
## 
##   sigma:  0.2403
## 
##      AIC     AICc      BIC 
## 365.9519 366.6792 370.7847 
## 
## Training set error measures:
##                      ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.07185931 24.59677 18.17952 -2.970506 19.80661 0.6917627
##                    ACF1
## Training set -0.1463349
plot(Sfit)

plot(forecast(Sfit,h=8),
  ylab="Forecasted Demand")

forecast(Sfit)
##          Point Forecast       Lo 80    Hi 80       Lo 95    Hi 95
## Nov 2016        88.9999   61.586425 116.4134   47.074608 130.9252
## Dec 2016        88.9999   49.677525 128.3223   28.861516 149.1383
## Jan 2017        88.9999   40.143983 137.8558   14.281223 163.7186
## Feb 2017        88.9999   31.762640 146.2372    1.463065 176.5367
## Mar 2017        88.9999   24.064061 153.9357  -10.310895 188.3107
## Apr 2017        88.9999   16.808873 161.1909  -21.406748 199.4065
## May 2017        88.9999    9.855191 168.1446  -32.041488 210.0413
## Jun 2017        88.9999    3.110415 174.8894  -42.356732 220.3565
## Jul 2017        88.9999   -3.490156 181.4900  -52.451434 230.4512
## Aug 2017        88.9999   -9.994132 187.9939  -62.398407 240.3982
## Sep 2017        88.9999  -16.438020 194.4378  -72.253483 250.2533
## Oct 2017        88.9999  -22.850778 200.8506  -82.060951 260.0608
## Nov 2017        88.9999  -29.256054 207.2559  -91.856974 269.8568
## Dec 2017        88.9999  -35.673641 213.6734 -101.671827 279.6716
## Jan 2018        88.9999  -42.120481 220.1203 -111.531418 289.5312
## Feb 2018        88.9999  -48.611359 226.6112 -121.458359 299.4582
## Mar 2018        88.9999  -55.159404 233.1592 -131.472730 309.4725
## Apr 2018        88.9999  -61.776465 239.7763 -141.592651 319.5925
## May 2018        88.9999  -68.473382 246.4732 -151.834702 329.8345
## Jun 2018        88.9999  -75.260205 253.2600 -162.214252 340.2141
## Jul 2018        88.9999  -82.146354 260.1462 -172.745708 350.7455
## Aug 2018        88.9999  -89.140754 267.1406 -183.442720 361.4425
## Sep 2018        88.9999  -96.251939 274.2517 -194.318339 372.3181
## Oct 2018        88.9999 -103.488133 281.4879 -205.385142 383.3849

Quarterly

Squarterly <- aggregate(S, nfrequency=4)
Squarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2013                 264
## 2014  201  280  459  418
## 2015  172  233  317  297
## 2016  199  222  301
SDataA <- window(Squarterly)
SfitA <- ets(SDataA)
summary(SfitA)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = SDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 280.2618 
## 
##   sigma:  83.4099
## 
##      AIC     AICc      BIC 
## 141.9893 144.9893 143.4440 
## 
## Training set error measures:
##                       ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -0.01600885 83.40993 65.12899 -8.334272 24.33473 0.9525264
##                   ACF1
## Training set 0.2052201
SDecomp <- decompose(Squarterly)
SDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2013                 264
## 2014  201  280  459  418
## 2015  172  233  317  297
## 2016  199  222  301     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2013                                58.64062
## 2014 -99.85938 -44.17188  85.39062  58.64062
## 2015 -99.85938 -44.17188  85.39062  58.64062
## 2016 -99.85938 -44.17188  85.39062          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2013                              NA
## 2014      NA 320.250 335.875 326.375
## 2015 302.750 269.875 258.125 260.125
## 2016 256.750      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2013                                          NA
## 2014         NA   3.921875  37.734375  32.984375
## 2015 -30.890625   7.296875 -26.515625 -21.765625
## 2016  42.109375         NA         NA           
## 
## $figure
## [1]  58.64062 -99.85938 -44.17188  85.39062
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(SDecomp)

forecast(SfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       280.2617 173.3676 387.1559 116.7813 443.7422
## 2017 Q1       280.2617 173.3676 387.1559 116.7813 443.7422
## 2017 Q2       280.2617 173.3676 387.1559 116.7813 443.7422
## 2017 Q3       280.2617 173.3676 387.1559 116.7813 443.7422
## 2017 Q4       280.2617 173.3676 387.1559 116.7813 443.7422
## 2018 Q1       280.2617 173.3676 387.1559 116.7813 443.7422
## 2018 Q2       280.2617 173.3676 387.1559 116.7813 443.7422
## 2018 Q3       280.2617 173.3676 387.1559 116.7813 443.7422

Monthly

U <- ts(c(75,31,42,114,33,53,109,152,71,105,88,51,41,59,29,39,187,79,146,81,59,147,65,71, 48,64,36,46,73,64,94,107,107,108,69,114
, 61,89,48,72,60,52,88,99,114,65,61,95, 71,33,90,41,54,61,83,92,99,120), start = c(2012,1), frequency = 12)
UData <- window(U)
Ufit <- ets(UData)
summary(Ufit)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = UData) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 77.671 
## 
##   sigma:  32.994
## 
##      AIC     AICc      BIC 
## 647.0795 647.5240 653.2609 
## 
## Training set error measures:
##                       ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.002959718 32.99402 26.38711 -19.67271 41.27086 0.9126368
##                    ACF1
## Training set 0.07840545
plot(Ufit)

plot(forecast(Ufit,h=8),
  ylab="Forecasted Demand")

forecast(Ufit)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2016       77.67103 35.38749 119.9546 13.00394 142.3381
## Dec 2016       77.67103 35.38749 119.9546 13.00394 142.3381
## Jan 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Feb 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Mar 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Apr 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## May 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Jun 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Jul 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Aug 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Sep 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Oct 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Nov 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Dec 2017       77.67103 35.38749 119.9546 13.00394 142.3381
## Jan 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## Feb 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## Mar 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## Apr 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## May 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## Jun 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## Jul 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## Aug 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## Sep 2018       77.67103 35.38749 119.9546 13.00394 142.3381
## Oct 2018       77.67103 35.38749 119.9546 13.00394 142.3381

Quarterly

Uquarterly <- aggregate(U, nfrequency=4)
Uquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  148  200  332  244
## 2013  129  305  286  283
## 2014  148  183  308  291
## 2015  198  184  301  221
## 2016  194  156  274
UDataA <- window(Uquarterly)
UfitA <- ets(UDataA)
summary(UfitA)
## ETS(A,N,A) 
## 
## Call:
##  ets(y = UDataA) 
## 
##   Smoothing parameters:
##     alpha = 2e-04 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 235.7526 
##     s=29.616 65.4914 -23.4219 -71.6855
## 
##   sigma:  34.5914
## 
##      AIC     AICc      BIC 
## 204.6013 214.7832 211.2124 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE     MASE
## Training set -3.406323 34.59141 28.38871 -4.071438 13.48771 0.751024
##                    ACF1
## Training set -0.2886025
UDecomp <- decompose(Uquarterly)
UDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  148  200  332  244
## 2013  129  305  286  283
## 2014  148  183  308  291
## 2015  198  184  301  221
## 2016  194  156  274     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012 -69.60938 -16.85938  66.76562  19.70312
## 2013 -69.60938 -16.85938  66.76562  19.70312
## 2014 -69.60938 -16.85938  66.76562  19.70312
## 2015 -69.60938 -16.85938  66.76562  19.70312
## 2016 -69.60938 -16.85938  66.76562          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA 228.625 239.375
## 2013 246.750 245.875 253.125 240.250
## 2014 227.750 231.500 238.750 245.125
## 2015 244.375 234.750 225.500 221.500
## 2016 214.625      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA  36.609375 -15.078125
## 2013 -48.140625  75.984375 -33.890625  23.046875
## 2014 -10.140625 -31.640625   2.484375  26.171875
## 2015  23.234375 -33.890625   8.734375 -20.203125
## 2016  48.984375         NA         NA           
## 
## $figure
## [1] -69.60938 -16.85938  66.76562  19.70312
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(UDecomp)

forecast(UfitA)
##         Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
## 2016 Q4       265.3518 221.0211 309.6824 197.55385 333.1497
## 2017 Q1       164.0522 119.7216 208.3829  96.25432 231.8502
## 2017 Q2       212.3126 167.9820 256.6433 144.51472 280.1106
## 2017 Q3       301.2289 256.8982 345.5596 233.43100 369.0269
## 2017 Q4       265.3518 221.0211 309.6825 197.55384 333.1497
## 2018 Q1       164.0522 119.7216 208.3829  96.25431 231.8502
## 2018 Q2       212.3126 167.9820 256.6433 144.51471 280.1106
## 2018 Q3       301.2289 256.8982 345.5596 233.43099 369.0269

Monthly

V <- ts(c(19,26,24,13,18,29,21,37,13,49,30,17, 21,18,22,30,25,30,25,30,24,39,20,27, 13,24,22,29,39,33,35,37,46,49,53,37, 28,37,42,36,40,58,84,77,56,78,66,72,81,77,97,135,82,95,75,85,66,141), start = c(2012,1), frequency = 12)
VData <- window(V)
Vfit <- ets(VData)
summary(Vfit)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = VData) 
## 
##   Smoothing parameters:
##     alpha = 0.2774 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 18.1913 
##     b = 1.0596 
## 
##   sigma:  0.3097
## 
##      AIC     AICc      BIC 
## 535.6375 536.7913 545.9397 
## 
## Training set error measures:
##                   ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 1.29895 15.08606 10.28412 -9.327191 26.71314 0.5339383
##                      ACF1
## Training set 0.0004804586
plot(Vfit)

plot(forecast(Vfit,h=8),
  ylab="Forecasted Demand")

forecast(Vfit)
##          Point Forecast    Lo 80    Hi 80       Lo 95    Hi 95
## Nov 2016       101.5053 61.21660 141.7940 39.88904683 163.1216
## Dec 2016       102.5724 60.20987 144.9350 37.78447320 167.3604
## Jan 2017       103.6396 59.25079 148.0284 35.75278064 171.5264
## Feb 2017       104.7067 58.33244 151.0810 33.78337961 175.6301
## Mar 2017       105.7739 57.44915 154.0986 31.86758969 179.6802
## Apr 2017       106.8410 56.59620 157.0858 29.99819580 183.6838
## May 2017       107.9082 55.76961 160.0467 28.16912816 187.6472
## Jun 2017       108.9753 54.96602 162.9846 26.37522632 191.5754
## Jul 2017       110.0424 54.18252 165.9024 24.61206194 195.4728
## Aug 2017       111.1096 53.41662 168.8026 22.87580327 199.3434
## Sep 2017       112.1767 52.66612 171.6873 21.16311009 203.1904
## Oct 2017       113.2439 51.92912 174.5586 19.47105112 207.0167
## Nov 2017       114.3110 51.20392 177.4181 17.79703828 210.8250
## Dec 2017       115.3782 50.48901 180.2673 16.13877387 214.6176
## Jan 2018       116.4453 49.78307 183.1075 14.49420758 218.3964
## Feb 2018       117.5124 49.08487 185.9400 12.86150140 222.1634
## Mar 2018       118.5796 48.39335 188.7658 11.23900048 225.9202
## Apr 2018       119.6467 47.70753 191.5859  9.62520897 229.6683
## May 2018       120.7139 47.02651 194.4013  8.01876972 233.4090
## Jun 2018       121.7810 46.34949 197.2126  6.41844717 237.1436
## Jul 2018       122.8482 45.67573 200.0206  4.82311283 240.8732
## Aug 2018       123.9153 45.00456 202.8261  3.23173284 244.5989
## Sep 2018       124.9825 44.33535 205.6296  1.64335738 248.3215
## Oct 2018       126.0496 43.66754 208.4317  0.05711148 252.0421

Quarterly

Vquarterly <- aggregate(V, nfrequency=4)
Vquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   69   60   71   96
## 2013   61   85   79   86
## 2014   59  101  118  139
## 2015  107  134  217  216
## 2016  255  312  226
VDataA <- window(Vquarterly)
VfitA <- ets(VDataA)
summary(VfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = VDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.6639 
## 
##   Initial states:
##     l = 62.2937 
## 
##   sigma:  0.2941
## 
##      AIC     AICc      BIC 
## 191.6433 193.2433 194.4766 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 14.61293 37.44144 29.45422 6.569823 21.69205 0.5867375
##                     ACF1
## Training set -0.06442327
VDecomp <- decompose(Vquarterly)
VDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   69   60   71   96
## 2013   61   85   79   86
## 2014   59  101  118  139
## 2015  107  134  217  216
## 2016  255  312  226     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -16.575521  -3.898438  10.580729   9.893229
## 2013 -16.575521  -3.898438  10.580729   9.893229
## 2014 -16.575521  -3.898438  10.580729   9.893229
## 2015 -16.575521  -3.898438  10.580729   9.893229
## 2016 -16.575521  -3.898438  10.580729           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  73.000  75.125
## 2013  79.250  79.000  77.500  79.250
## 2014  86.125  97.625 110.250 120.375
## 2015 136.875 158.875 187.000 227.750
## 2016 251.125      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA -12.580729  10.981771
## 2013  -1.674479   9.898438  -9.080729  -3.143229
## 2014 -10.549479   7.273438  -2.830729   8.731771
## 2015 -13.299479 -20.976562  19.419271 -21.643229
## 2016  20.450521         NA         NA           
## 
## $figure
## [1] -16.575521  -3.898438  10.580729   9.893229
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(VDecomp)

forecast(VfitA)
##         Point Forecast     Lo 80    Hi 80       Lo 95    Hi 95
## 2016 Q4       246.6143 153.65433 339.5742 104.4443158 388.7842
## 2017 Q1       246.6143 133.56753 359.6610  73.7241995 419.5043
## 2017 Q2       246.6143 115.94156 377.2870  46.7676049 446.4609
## 2017 Q3       246.6143  99.86639 393.3621  22.1827531 471.0458
## 2017 Q4       246.6143  84.85964 408.3689  -0.7680903 493.9966
## 2018 Q1       246.6143  70.62932 422.5992 -22.5314767 515.7600
## 2018 Q2       246.6143  56.98281 436.2457 -43.4020230 536.6305
## 2018 Q3       246.6143  43.78498 449.4435 -63.5863530 556.8149

Monthly

W <- ts(c(71,56,40, 35,28,36,68,53,74,73,68,85,95,55,45, 30,12,41,42,71,69,79,76,89,110,66,68,31,40,45,57,73,76,92,125,72,68
), start = c(2013, 10), frequency = 12)
WData <- window(W)
Wfit <- ets(WData)
summary(Wfit)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = WData) 
## 
##   Smoothing parameters:
##     alpha = 0.8778 
## 
##   Initial states:
##     l = 68.9324 
## 
##   sigma:  20.2136
## 
##      AIC     AICc      BIC 
## 362.0743 362.8016 366.9071 
## 
## Training set error measures:
##                       ME     RMSE      MAE       MPE     MAPE     MASE
## Training set 0.008748175 20.21361 15.98652 -8.782722 31.50222 1.141894
##                      ACF1
## Training set -0.009507915
plot(Wfit)

plot(forecast(Wfit,h=8),
  ylab="Forecasted Demand")

forecast(Wfit)
##          Point Forecast       Lo 80     Hi 80       Lo 95    Hi 95
## Nov 2016       69.21657  43.3117875  95.12134   29.598626 108.8345
## Dec 2016       69.21657  34.7475928 103.68554   16.500821 121.9323
## Jan 2017       69.21657  27.9229505 110.51018    6.063431 132.3697
## Feb 2017       69.21657  22.0761879 116.35694   -2.878421 141.3116
## Mar 2017       69.21657  16.8785511 121.55458  -10.827520 149.2607
## Apr 2017       69.21657  12.1523883 126.28074  -18.055563 156.4887
## May 2017       69.21657   7.7887796 130.64435  -24.729126 163.1623
## Jun 2017       69.21657   3.7152263 134.71791  -30.959088 169.3922
## Jul 2017       69.21657  -0.1194136 138.55255  -36.823664 175.2568
## Aug 2017       69.21657  -3.7528155 142.18595  -42.380473 180.8136
## Sep 2017       69.21657  -7.2136845 145.64682  -47.673415 186.1065
## Oct 2017       69.21657 -10.5244884 148.95762  -52.736853 191.1700
## Nov 2017       69.21657 -13.7032044 152.13634  -57.598279 196.0314
## Dec 2017       69.21657 -16.7644836 155.19762  -62.280102 200.7132
## Jan 2018       69.21657 -19.7204536 158.15359  -66.800868 205.2340
## Feb 2018       69.21657 -22.5812881 161.01442  -71.176137 209.6093
## Mar 2018       69.21657 -25.3556212 163.78875  -75.419113 213.8522
## Apr 2018       69.21657 -28.0508548 166.48399  -79.541117 217.9742
## May 2018       69.21657 -30.6733921 169.10652  -83.551942 221.9851
## Jun 2018       69.21657 -33.2288160 171.66195  -87.460125 225.8933
## Jul 2018       69.21657 -35.7220296 174.15516  -91.273167 229.7063
## Aug 2018       69.21657 -38.1573667 176.59050  -94.997693 233.4308
## Sep 2018       69.21657 -40.5386798 178.97181  -98.639597 237.0727
## Oct 2018       69.21657 -42.8694124 181.30254 -102.204145 240.6373

Quarterly

Wquarterly <- aggregate(W, nfrequency=4)
Wquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2013                 167
## 2014   99  195  226  195
## 2015   83  182  244  244
## 2016  116  206  289
WDataA <- window(Wquarterly)
WfitA <- ets(WDataA)
summary(WfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = WDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 187.1598 
## 
##   sigma:  0.3196
## 
##      AIC     AICc      BIC 
## 134.0111 137.0111 135.4658 
## 
## Training set error measures:
##                      ME     RMSE      MAE       MPE     MAPE     MASE
## Training set 0.01555291 59.82054 48.14404 -14.54487 33.91747 1.704214
##                    ACF1
## Training set 0.02068148
WDecomp <- decompose(Wquarterly)
WDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2013                 167
## 2014   99  195  226  195
## 2015   83  182  244  244
## 2016  116  206  289     
## 
## $seasonal
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2013                             32.6875
## 2014 -91.9375   9.3125  49.9375  32.6875
## 2015 -91.9375   9.3125  49.9375  32.6875
## 2016 -91.9375   9.3125  49.9375         
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2013                              NA
## 2014      NA 175.250 176.750 173.125
## 2015 173.750 182.125 192.375 199.500
## 2016 208.125      NA      NA        
## 
## $random
##          Qtr1     Qtr2     Qtr3     Qtr4
## 2013                                  NA
## 2014       NA  10.4375  -0.6875 -10.8125
## 2015   1.1875  -9.4375   1.6875  11.8125
## 2016  -0.1875       NA       NA         
## 
## $figure
## [1]  32.6875 -91.9375   9.3125  49.9375
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(WDecomp)

forecast(WfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       187.1598 110.4937 263.8259 69.90916 304.4105
## 2017 Q1       187.1598 110.4937 263.8259 69.90916 304.4105
## 2017 Q2       187.1598 110.4937 263.8259 69.90915 304.4105
## 2017 Q3       187.1598 110.4937 263.8259 69.90915 304.4105
## 2017 Q4       187.1598 110.4937 263.8259 69.90915 304.4105
## 2018 Q1       187.1598 110.4937 263.8259 69.90915 304.4105
## 2018 Q2       187.1598 110.4937 263.8259 69.90915 304.4105
## 2018 Q3       187.1598 110.4937 263.8259 69.90915 304.4105

Monthly

X <- ts(c(17,33,24,25,17,20,14,14,12,11,15,10
,16,13,18,26,41,16,5,33,47,36,20,24
, 19,25,56,30,48,47,40,24,31,41,35,40, 28,29,32,49,63,84,55,70,70,92,62,49,42,69,79,71,85,72,93,52,43), start = c(2012,1), frequency = 12)
XData <- window(X)
Xfit <- ets(XData)
summary(Xfit)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = XData) 
## 
##   Smoothing parameters:
##     alpha = 0.4705 
## 
##   Initial states:
##     l = 22.4425 
## 
##   sigma:  14.1105
## 
##      AIC     AICc      BIC 
## 538.2029 538.6557 544.3320 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 1.271077 14.11052 10.99735 -10.6223 34.98885 0.5566712
##                   ACF1
## Training set 0.1223726
plot(Xfit)

plot(forecast(Xfit,h=8),
  ylab="Forecasted Demand")

forecast(Xfit)
##          Point Forecast    Lo 80     Hi 80      Lo 95     Hi 95
## Oct 2016       56.53436 38.45100  74.61772  28.878254  84.19047
## Nov 2016       56.53436 36.54906  76.51966  25.969474  87.09925
## Dec 2016       56.53436 34.81301  78.25571  23.314422  89.75430
## Jan 2017       56.53436 33.20580  79.86292  20.856407  92.21231
## Feb 2017       56.53436 31.70240  81.36632  18.557151  94.51157
## Mar 2017       56.53436 30.28496  82.78376  16.389368  96.67935
## Apr 2017       56.53436 28.94024  84.12848  14.332791  98.73593
## May 2017       56.53436 27.65807  85.41065  12.371882 100.69684
## Jun 2017       56.53436 26.43046  86.63826  10.494415 102.57430
## Jul 2017       56.53436 25.25098  87.81773   8.690567 104.37815
## Aug 2017       56.53436 24.11439  88.95433   6.952301 106.11642
## Sep 2017       56.53436 23.01632  90.05240   5.272945 107.79577
## Oct 2017       56.53436 21.95310  91.11562   3.646888 109.42183
## Nov 2017       56.53436 20.92161  92.14711   2.069355 110.99936
## Dec 2017       56.53436 19.91916  93.14956   0.536246 112.53247
## Jan 2018       56.53436 18.94344  94.12528  -0.955994 114.02471
## Feb 2018       56.53436 17.99241  95.07631  -2.410469 115.47919
## Mar 2018       56.53436 17.06429  96.00443  -3.829908 116.89863
## Apr 2018       56.53436 16.15749  96.91123  -5.216728 118.28545
## May 2018       56.53436 15.27062  97.79810  -6.573080 119.64180
## Jun 2018       56.53436 14.40242  98.66630  -7.900887 120.96961
## Jul 2018       56.53436 13.55174  99.51698  -9.201878 122.27060
## Aug 2018       56.53436 12.71758 100.35114 -10.477617 123.54634
## Sep 2018       56.53436 11.89901 101.16971 -11.729519 124.79824

Quarterly

Xquarterly <- aggregate(X, nfrequency=4)
Xquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   74   62   40   36
## 2013   47   83   85   80
## 2014  100  125   95  116
## 2015   89  196  195  203
## 2016  190  228  188
XDataA <- window(Xquarterly)
XfitA <- ets(XDataA)
summary(XfitA)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = XDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.7426 
## 
##   Initial states:
##     l = 69.4497 
## 
##   sigma:  31.139
## 
##      AIC     AICc      BIC 
## 192.6059 194.2059 195.4392 
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 8.964681 31.13903 23.00844 2.428966 21.52055 0.5023677
##                    ACF1
## Training set -0.1495378
XDecomp <- decompose(Xquarterly)
XDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   74   62   40   36
## 2013   47   83   85   80
## 2014  100  125   95  116
## 2015   89  196  195  203
## 2016  190  228  188     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -17.276042  23.890625  -1.401042  -5.213542
## 2013 -17.276042  23.890625  -1.401042  -5.213542
## 2014 -17.276042  23.890625  -1.401042  -5.213542
## 2015 -17.276042  23.890625  -1.401042  -5.213542
## 2016 -17.276042  23.890625  -1.401042           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  49.625  48.875
## 2013  57.125  68.250  80.375  92.250
## 2014  98.750 104.500 107.625 115.125
## 2015 136.500 159.875 183.375 200.000
## 2016 203.125      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA  -8.223958  -7.661458
## 2013   7.151042  -9.140625   6.026042  -7.036458
## 2014  18.526042  -3.390625 -11.223958   6.088542
## 2015 -30.223958  12.234375  13.026042   8.213542
## 2016   4.151042         NA         NA           
## 
## $figure
## [1] -17.276042  23.890625  -1.401042  -5.213542
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(XDecomp)

forecast(XfitA)
##         Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
## 2016 Q4       195.9366 156.0303 235.8428 134.90518 256.9680
## 2017 Q1       195.9366 146.2303 245.6429 119.91733 271.9558
## 2017 Q2       195.9366 138.0667 253.8064 107.43223 284.4409
## 2017 Q3       195.9366 130.9202 260.9529  96.50261 295.3705
## 2017 Q4       195.9366 124.4849 267.3882  86.66075 305.2124
## 2018 Q1       195.9366 118.5832 273.2899  77.63484 314.2383
## 2018 Q2       195.9366 113.1009 278.7722  69.25037 322.6228
## 2018 Q3       195.9366 107.9596 283.9136  61.38737 330.4858

Quarterly

Y <- ts(c(12,11,17,17,43,20,17,23,12,18,11,29, 13,30,17,6,21,35,28,26,18,101,52,18, 23,23,19,39,35,27,47,39,54,38,34,34, 
12,32,27,43,56,60,51,31,40,52,39,29,47,42,62,54,107,81,96,112,110,60), start = c(2012,12), frequency = 12)
YData <- window(Y)
Yfit <- ets(YData)
summary(Yfit)
## ETS(M,N,A) 
## 
## Call:
##  ets(y = YData) 
## 
##   Smoothing parameters:
##     alpha = 0.2394 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 21.8664 
##     s=0.6057 -4.8189 23.0302 -7.6226 -3.226 3.0836
##            1.1993 8.0777 -5.0708 -5.39 -2.0166 -7.8515
## 
##   sigma:  0.4419
## 
##      AIC     AICc      BIC 
## 567.0208 578.4494 597.9275 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 4.065376 18.45713 13.35556 -5.672447 37.36407 0.6366381
##                   ACF1
## Training set 0.1042809
plot(Yfit)

plot(forecast(Yfit,h=8),
  ylab="Forecasted Demand")

forecast(Yfit)
##          Point Forecast      Lo 80    Hi 80       Lo 95    Hi 95
## Oct 2017       73.48865 31.8711962 115.1061   9.8402459 137.1371
## Nov 2017       78.90777 32.9134474 124.9021   8.5655235 149.2500
## Dec 2017       70.45297 27.4581675 113.4478   4.6980952 136.2078
## Jan 2018       76.28808 29.0118559 123.5643   3.9853345 148.5908
## Feb 2018       72.91684 25.9523721 119.8813   1.0908828 144.7428
## Mar 2018       73.23710 24.8321391 121.6421  -0.7918993 147.2661
## Apr 2018       86.38863 30.3433342 142.4339   0.6747472 172.1025
## May 2018       79.50836 25.2195176 133.7972  -3.5192585 162.5360
## Jun 2018       81.39228 24.8801791 137.9044  -5.0355184 167.8201
## Jul 2018       75.08419 19.9978352 130.1705  -9.1631193 159.3315
## Aug 2018       70.68879 16.2217980 125.1558 -12.6112842 153.9889
## Sep 2018      101.32799 32.1763337 170.4797  -4.4303430 207.0863
## Oct 2018       73.48865 14.6391723 132.3381 -16.5138605 163.4912
## Nov 2018       78.90777 16.7297068 141.0858 -16.1853718 174.0009
## Dec 2018       70.45297 10.2968072 130.6091 -21.5479405 162.4539
## Jan 2019       76.28808 12.8447331 139.7314 -20.7401462 173.3163
## Feb 2019       72.91684  9.5469420 136.2867 -23.9990574 169.8327
## Mar 2019       73.23710  8.6356015 137.8386 -25.5623660 172.0366
## Apr 2019       86.38863 15.7354482 157.0418 -21.6660866 194.4433
## May 2019       79.50836 10.0910415 148.9257 -26.6562662 185.6730
## Jun 2019       81.39228 10.0758741 152.7087 -27.6767491 190.4613
## Jul 2019       75.08419  4.7408243 145.4276 -32.4967040 182.6651
## Aug 2019       70.68879  0.6769568 140.7006 -36.3850672 177.7626
## Sep 2019      101.32799 19.2388960 183.4171 -24.2164465 226.8724

Quarterly

Yquarterly <- aggregate(Y, nfrequency=4)
Yquarterly
## Time Series:
## Start = 2012.91666666667 
## End = 2017.41666666667 
## Frequency = 4 
##  [1]  40  80  52  58  60  62  72 171  65 101 140 106  71 159 122 120 151
## [18] 242 318
YDataA <- window(Yquarterly)
YfitA <- ets(YDataA)
summary(YfitA)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = YDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 37.3191 
##     b = 7.6491 
## 
##   sigma:  0.3466
## 
##      AIC     AICc      BIC 
## 202.6238 207.2392 207.3460 
## 
## Training set error measures:
##                   ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 1.47732 45.94174 33.84957 -11.64143 29.47274 0.6323083
##                  ACF1
## Training set 0.155054
YDecomp <- decompose(Yquarterly)
YDecomp
## $x
## Time Series:
## Start = 2012.91666666667 
## End = 2017.41666666667 
## Frequency = 4 
##  [1]  40  80  52  58  60  62  72 171  65 101 140 106  71 159 122 120 151
## [18] 242 318
## 
## $seasonal
## Time Series:
## Start = 2012.91666666667 
## End = 2017.41666666667 
## Frequency = 4 
##  [1] -27.231771   9.664062   4.424479  13.143229 -27.231771   9.664062
##  [7]   4.424479  13.143229 -27.231771   9.664062   4.424479  13.143229
## [13] -27.231771   9.664062   4.424479  13.143229 -27.231771   9.664062
## [19]   4.424479
## 
## $trend
## Time Series:
## Start = 2012.91666666667 
## End = 2017.41666666667 
## Frequency = 4 
##  [1]      NA      NA  60.000  60.250  60.500  77.125  91.875  97.375
##  [9] 110.750 111.125 103.750 111.750 116.750 116.250 128.000 148.375
## [17] 183.250      NA      NA
## 
## $random
## Time Series:
## Start = 2012.91666666667 
## End = 2017.41666666667 
## Frequency = 4 
##  [1]         NA         NA -12.424479 -15.393229  26.731771 -24.789062
##  [7] -24.299479  60.481771 -18.518229 -19.789062  31.825521 -18.893229
## [13] -18.518229  33.085938 -10.424479 -41.518229  -5.018229         NA
## [19]         NA
## 
## $figure
## [1] -27.231771   9.664062   4.424479  13.143229
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(YDecomp)

Z <- ts(c(26,88,31,85,33,28,81,60,38,26,35,32, 15,17,65,84,102,33,12,48,133,402,34,53, 90,17,25,22,135,52,76,11,39,72,155,78, 30,5,93,245,34,56,56,45,40,2,1,1,28,19,92,54,55,98,63,16,48,63), start = c(2012, 1), frequency = 12)
ZData <- window(Z)
Zfit <- ets(ZData)
summary(Zfit)
## ETS(M,N,M) 
## 
## Call:
##  ets(y = ZData) 
## 
##   Smoothing parameters:
##     alpha = 0.0305 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 76.5537 
##     s=0.5866 1.2566 2.2297 1.0044 0.5173 0.7202
##            0.7931 1.0685 1.7132 0.9385 0.557 0.6149
## 
##   sigma:  0.6497
## 
##      AIC     AICc      BIC 
## 696.3234 707.7519 727.2300 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -10.20286 60.41428 43.53493 -419.5878 445.5997 0.6989902
##                   ACF1
## Training set 0.1419605
plot(Zfit)

plot(forecast(Zfit,h=8),
  ylab="Forecasted Demand")

forecast(Zfit)
##          Point Forecast     Lo 80     Hi 80      Lo 95     Hi 95
## Nov 2016       78.88435 13.206074 144.56263 -21.561908 179.33061
## Dec 2016       36.82846  6.145189  67.51173 -10.097553  83.75447
## Jan 2017       38.60457  6.420295  70.78885 -10.617033  87.82618
## Feb 2017       34.96724  5.796124  64.13835  -9.646130  79.58060
## Mar 2017       58.92708  9.735248 108.11891 -16.305335 134.15950
## Apr 2017      107.55905 17.710480 197.40761 -29.852477 244.97057
## May 2017       67.08725 11.009566 123.16493 -18.676165 152.85066
## Jun 2017       49.79950  8.145121  91.45387 -13.905373 113.50437
## Jul 2017       45.22130  7.371460  83.07115 -12.665037 103.10764
## Aug 2017       32.48102  5.276834  59.68521  -9.124194  74.08624
## Sep 2017       63.06102 10.210179 115.91185 -17.767364 143.88940
## Oct 2017      139.97723 22.586757 257.36771 -39.556007 319.51048
## Nov 2017       78.88446 12.685196 145.08372 -22.358577 180.12750
## Dec 2017       36.82851  5.902074  67.75495 -10.469393  84.12641
## Jan 2018       38.60462  6.165522  71.04373 -11.006702  88.21595
## Feb 2018       34.96728  5.565417  64.36915  -9.998992  79.93356
## Mar 2018       58.92716  9.346560 108.50776 -16.899824 134.75414
## Apr 2018      107.55919 17.001198 198.11718 -30.937307 246.05569
## May 2018       67.08734 10.567285 123.60739 -19.352623 153.52730
## Jun 2018       49.79956  7.816898  91.78223 -14.407384 114.00651
## Jul 2018       45.22136  7.073488  83.36924 -13.120778 103.56351
## Aug 2018       32.48107  5.062866  59.89927  -9.451453  74.41359
## Sep 2018       63.06110  9.794874 116.32733 -18.402563 144.52476
## Oct 2018      139.97742 21.665139 258.28971 -40.965601 320.92045

Quarterly

Zquarterly <- aggregate(Z, nfrequency=4)
Zquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  145  146  179   93
## 2013   97  219  193  489
## 2014  132  209  126  305
## 2015  128  335  141    4
## 2016  139  207  127
ZDataA <- window(Zquarterly)
ZfitA <- ets(ZDataA)
summary(ZfitA)
## ETS(M,N,M) 
## 
## Call:
##  ets(y = ZDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     gamma = 0.001 
## 
##   Initial states:
##     l = 192.2752 
##     s=1.5985 0.721 1.0845 0.5959
## 
##   sigma:  0.3771
## 
##      AIC     AICc      BIC 
## 228.8473 239.0291 235.4584 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE   MAPE      MASE
## Training set -6.542397 102.1583 59.38205 -405.3691 425.84 0.6246358
##                     ACF1
## Training set -0.01503622
ZDecomp <- decompose(Zquarterly)
ZDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012  145  146  179   93
## 2013   97  219  193  489
## 2014  132  209  126  305
## 2015  128  335  141    4
## 2016  139  207  127     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012 -62.71615  51.36719 -24.96615  36.31510
## 2013 -62.71615  51.36719 -24.96615  36.31510
## 2014 -62.71615  51.36719 -24.96615  36.31510
## 2015 -62.71615  51.36719 -24.96615  36.31510
## 2016 -62.71615  51.36719 -24.96615          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA 134.750 137.875
## 2013 148.750 200.000 253.875 257.000
## 2014 247.375 216.000 192.500 207.750
## 2015 225.375 189.625 153.375 138.750
## 2016 121.000      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA   69.21615  -81.19010
## 2013   10.96615  -32.36719  -35.90885  195.68490
## 2014  -52.65885  -58.36719  -41.53385   60.93490
## 2015  -34.65885   94.00781   12.59115 -171.06510
## 2016   80.71615         NA         NA           
## 
## $figure
## [1] -62.71615  51.36719 -24.96615  36.31510
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(ZDecomp)

forecast(ZfitA)
##         Point Forecast     Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       307.0338 158.64747 455.4201 80.09649 533.9711
## 2017 Q1       114.6572  59.24454 170.0699 29.91084 199.4036
## 2017 Q2       208.6000 107.78573 309.4143 54.41788 362.7822
## 2017 Q3       138.7137  71.67476 205.7526 36.18650 241.2409
## 2017 Q4       307.0338 158.64737 455.4203 80.09633 533.9713
## 2018 Q1       114.6572  59.24450 170.0699 29.91078 199.4036
## 2018 Q2       208.6000 107.78566 309.4144 54.41777 362.7823
## 2018 Q3       138.7137  71.67471 205.7527 36.18642 241.2409
AA <- ts(c(12,16,34,17,13,7,16,7,46,48,34,16
,25,50,14,32,39,26,47,61,30,44,26,7
,5,30,18,28,49,44,48,70,87,66,45,55
, 53,30,29,44,68,63,67,56,73,54,28,48,39,64,36,22,55,91,44,44,10,24), start = c(2012,1), frequency = 12)
AAData <- window(AA)
AAfit <- ets(AAData)
summary(AAfit)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = AAData) 
## 
##   Smoothing parameters:
##     alpha = 0.4678 
## 
##   Initial states:
##     l = 16.4249 
## 
##   sigma:  18.2727
## 
##      AIC     AICc      BIC 
## 578.5333 578.9777 584.7146 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.4244408 18.27274 15.04225 -30.07152 59.85113 0.7496677
##                   ACF1
## Training set 0.1418948
plot(AAfit)

plot(forecast(AAfit,h=8),
  ylab="Forecasted Demand")

forecast(AAfit)
##          Point Forecast       Lo 80    Hi 80      Lo 95     Hi 95
## Nov 2016       27.94074   4.5232800 51.35819  -7.873173  63.75465
## Dec 2016       27.94074   2.0877489 53.79373 -11.597996  67.47947
## Jan 2017       27.94074  -0.1373094 56.01878 -15.000929  70.88240
## Feb 2017       27.94074  -2.1985461 58.08002 -18.153319  74.03479
## Mar 2017       27.94074  -4.1275665 60.00904 -21.103501  76.98497
## Apr 2017       27.94074  -5.9469567 61.82843 -23.886018  79.76749
## May 2017       27.94074  -7.6735225 63.55500 -26.526573  82.40805
## Jun 2017       27.94074  -9.3201699 65.20164 -29.044902  84.92638
## Jul 2017       27.94074 -10.8970652 66.77854 -31.456556  87.33803
## Aug 2017       27.94074 -12.4123865 68.29386 -33.774040  89.65551
## Sep 2017       27.94074 -13.8728287 69.75430 -36.007593  91.88907
## Oct 2017       27.94074 -15.2839547 71.16543 -38.165724  94.04720
## Nov 2017       27.94074 -16.6504468 72.53192 -40.255594  96.13707
## Dec 2017       27.94074 -17.9762900 73.85776 -42.283296  98.16477
## Jan 2018       27.94074 -19.2649096 75.14638 -44.254069 100.13554
## Feb 2018       27.94074 -20.5192750 76.40075 -46.172456 102.05393
## Mar 2018       27.94074 -21.7419810 77.62346 -48.042423 103.92390
## Apr 2018       27.94074 -22.9353100 78.81678 -49.867462 105.74894
## May 2018       27.94074 -24.1012831 79.98276 -51.650664 107.53214
## Jun 2018       27.94074 -25.2416996 81.12317 -53.394781 109.27625
## Jul 2018       27.94074 -26.3581696 82.23964 -55.102274 110.98375
## Aug 2018       27.94074 -27.4521412 83.33362 -56.775360 112.65683
## Sep 2018       27.94074 -28.5249220 84.40640 -58.416036 114.29751
## Oct 2018       27.94074 -29.5776979 85.45917 -60.026118 115.90759

Quarterly

AAquarterly <- aggregate(AA, nfrequency=4)
AAquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   62   37   69   98
## 2013   89   97  138   77
## 2014   53  121  205  166
## 2015  112  175  196  130
## 2016  139  168   98
AADataA <- window(AAquarterly)
AAfitA <- ets(AADataA)
summary(AAfitA)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = AADataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 63.0154 
##     b = 5.7287 
## 
##   sigma:  0.296
## 
##      AIC     AICc      BIC 
## 200.3156 204.9310 205.0378 
## 
## Training set error measures:
##                     ME    RMSE      MAE       MPE     MAPE      MASE
## Training set -2.900727 36.6818 28.36591 -14.77333 29.59656 0.6229702
##                   ACF1
## Training set 0.1232476
AADecomp <- decompose(AAquarterly)
AADecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   62   37   69   98
## 2013   89   97  138   77
## 2014   53  121  205  166
## 2015  112  175  196  130
## 2016  139  168   98     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -30.471354   1.664062  34.778646  -5.971354
## 2013 -30.471354   1.664062  34.778646  -5.971354
## 2014 -30.471354   1.664062  34.778646  -5.971354
## 2015 -30.471354   1.664062  34.778646  -5.971354
## 2016 -30.471354   1.664062  34.778646           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  69.875  80.750
## 2013  96.875 102.875  95.750  94.250
## 2014 105.625 125.125 143.625 157.750
## 2015 163.375 157.750 156.625 159.125
## 2016 146.000      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA -35.653646  23.221354
## 2013  22.596354  -7.539062   7.471354 -11.278646
## 2014 -22.153646  -5.789062  26.596354  14.221354
## 2015 -20.903646  15.585938   4.596354 -23.153646
## 2016  23.471354         NA         NA           
## 
## $figure
## [1] -30.471354   1.664062  34.778646  -5.971354
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(AADecomp)

forecast(AAfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       177.5405 110.1891 244.8918 74.53550 280.5454
## 2017 Q1       183.2637 113.7412 252.7862 76.93824 289.5891
## 2017 Q2       188.9869 117.2933 260.6805 79.34096 298.6328
## 2017 Q3       194.7101 120.8453 268.5749 81.74369 307.6766
## 2017 Q4       200.4333 124.3974 276.4693 84.14641 316.7203
## 2018 Q1       206.1566 127.9495 284.3637 86.54912 325.7640
## 2018 Q2       211.8798 131.5015 292.2581 88.95182 334.8077
## 2018 Q3       217.6030 135.0536 300.1525 91.35452 343.8515
BB <- ts(c(55,19,11,25,15,51,9,9,44,65,21,22
, 24,11,18,4,35,22,26,29,26,30,8,24
, 29,7,14,9,12,12,9,15,7,10,22,14
, 39,16,16,42,80,38,24,24,31,24,40,166,50,30,47,74,24,11,25,27,46,63), start = c(2012,1), frequency = 12)
BBData <- window(BB)
BBfit <- ets(BBData)
summary(BBfit)
## ETS(M,N,M) 
## 
## Call:
##  ets(y = BBData) 
## 
##   Smoothing parameters:
##     alpha = 0.275 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 26.25 
##     s=1.7786 0.8197 1.1797 0.9376 0.6391 0.6134
##            1.0326 1.515 0.9358 0.581 0.5011 1.4664
## 
##   sigma:  0.5803
## 
##      AIC     AICc      BIC 
## 575.1591 586.5877 606.0658 
## 
## Training set error measures:
##                     ME    RMSE      MAE       MPE     MAPE      MASE
## Training set 0.2839452 22.4258 14.40288 -36.10825 67.12377 0.6795205
##                    ACF1
## Training set 0.06920825
plot(BBfit)

plot(forecast(BBfit,h=8),
  ylab="Forecasted Demand")

forecast(BBfit)
##          Point Forecast       Lo 80     Hi 80      Lo 95     Hi 95
## Nov 2016       37.62017   9.6413128  65.59903  -5.169799  80.41014
## Dec 2016       81.61879  17.9235966 145.31399 -15.794605 179.03219
## Jan 2017       67.29452  12.3618761 122.22716 -16.717709 151.30675
## Feb 2017       22.99910   3.4142470  42.58396  -6.953350  52.95156
## Mar 2017       26.66476   3.0334264  50.29609  -9.476244  62.80576
## Apr 2017       42.94172   3.4158164  82.46763 -17.507934 103.39138
## May 2017       69.51887   3.1791806 135.85856 -31.938931 170.97668
## Jun 2017       47.38798   0.5808543  94.19510 -24.197341 118.97330
## Jul 2017       28.15212  -0.5892103  56.89345 -15.803950  72.10819
## Aug 2017       29.33062  -1.5802379  60.24148 -17.943458  76.60470
## Sep 2017       43.02654  -3.7272126  89.78030 -28.477155 114.53024
## Oct 2017       54.13703  -6.4539027 114.72796 -38.528803 146.80286
## Nov 2017       37.62052  -5.7069486  80.94799 -28.643124 103.88416
## Dec 2017       81.61955 -15.0229966 178.26210 -66.182471 229.42157
## Jan 2018       67.29514 -14.5596317 149.14992 -57.890932 192.48122
## Feb 2018       22.99932  -5.7177142  51.71635 -20.919592  66.91822
## Mar 2018       26.66500  -7.4883498  60.81836 -25.568043  78.89805
## Apr 2018       42.94212 -13.4433320  99.32757 -43.291987 129.17622
## May 2018       69.51952 -24.0052640 163.04430 -73.514292 212.55333
## Jun 2018       47.38842 -17.8931766 112.67001 -52.451165 147.22800
## Jul 2018       28.15238 -11.5403055  67.84506 -32.552343  88.85710
## Aug 2018       29.33089 -12.9739653  71.63575 -35.368805  94.03059
## Sep 2018       43.02694 -20.4302684 106.48415 -54.022486 140.07637
## Oct 2018       54.13753 -27.4704175 135.74548 -70.671055 178.94611

Quarterly

BBquarterly <- aggregate(BB, nfrequency=4)
BBquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   85   91   62  108
## 2013   53   61   81   62
## 2014   50   33   31   46
## 2015   71  160   79  230
## 2016  127  109   98
BBDataA <- window(BBquarterly)
BBfitA <- ets(BBDataA)
summary(BBfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = BBDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.7746 
## 
##   Initial states:
##     l = 65.2583 
## 
##   sigma:  0.5856
## 
##      AIC     AICc      BIC 
## 205.8992 207.4992 208.7325 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 2.511442 48.90745 35.81641 -8.922444 38.82135 0.7359535
##                    ACF1
## Training set -0.4489179
BBDecomp <- decompose(BBquarterly)
BBDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   85   91   62  108
## 2013   53   61   81   62
## 2014   50   33   31   46
## 2015   71  160   79  230
## 2016  127  109   98     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -12.640625   8.421875 -21.078125  25.296875
## 2013 -12.640625   8.421875 -21.078125  25.296875
## 2014 -12.640625   8.421875 -21.078125  25.296875
## 2015 -12.640625   8.421875 -21.078125  25.296875
## 2016 -12.640625   8.421875 -21.078125           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  82.500  74.750
## 2013  73.375  70.000  63.875  60.000
## 2014  50.250  42.000  42.625  61.125
## 2015  83.000 112.000 142.000 142.625
## 2016 138.625      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA   0.578125   7.953125
## 2013  -7.734375 -17.421875  38.203125 -23.296875
## 2014  12.390625 -17.421875   9.453125 -40.421875
## 2015   0.640625  39.578125 -41.921875  62.078125
## 2016   1.015625         NA         NA           
## 
## $figure
## [1] -12.640625   8.421875 -21.078125  25.296875
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(BBDecomp)

forecast(BBfitA)
##         Point Forecast        Lo 80    Hi 80      Lo 95    Hi 95
## 2016 Q4        102.219   25.5019703 178.9360  -15.10957 219.5476
## 2017 Q1        102.219   -0.8714502 205.3094  -55.44423 259.8822
## 2017 Q2        102.219  -25.6307243 230.0687  -93.31028 297.7483
## 2017 Q3        102.219  -50.2277686 254.6658 -130.92821 335.3662
## 2017 Q4        102.219  -75.4130130 279.8510 -169.44572 373.8837
## 2018 Q1        102.219 -101.6849156 306.1229 -209.62512 414.0631
## 2018 Q2        102.219 -129.4337949 333.8718 -252.06337 456.5014
## 2018 Q3        102.219 -159.0015284 363.4395 -297.28332 501.7213
CC <- ts(c(12,31,10,14,25,25,12,34,19,26,9,13
, 12,44,25,17,19,26,37,31,13,27,8,23
, 11,8,9,18,32,36,30,42,24,14,20,1,
5,9,23,8,49,54,58,47,49,103,26,47,33,35,32,35,45,44,67,74,44,59), start = c(2012,1), frequency = 12)
CCData <- window(CC)
CCfit <- ets(CCData)
summary(CCfit)
## ETS(M,N,A) 
## 
## Call:
##  ets(y = CCData) 
## 
##   Smoothing parameters:
##     alpha = 0.1806 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 20.6524 
##     s=-5.9888 -9.5895 12.3898 -3.7328 7.6394 4.7185
##            6.7458 7.9288 -7.3201 -3.9303 2.4739 -11.3347
## 
##   sigma:  0.4641
## 
##      AIC     AICc      BIC 
## 543.1273 554.5559 574.0340 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 2.604013 13.07638 9.226494 -34.10777 62.72762 0.6142094
##                   ACF1
## Training set 0.2055978
plot(CCfit)

plot(forecast(CCfit,h=8),
  ylab="Forecasted Demand")

forecast(CCfit)
##          Point Forecast     Lo 80     Hi 80       Lo 95     Hi 95
## Nov 2016       38.34598 15.536617  61.15535   3.4620680  73.22990
## Dec 2016       41.94738 16.585652  67.30912   3.1599619  80.73481
## Jan 2017       36.60156 13.809396  59.39372   1.7439544  71.45916
## Feb 2017       50.40866 19.365591  81.45173   2.9323814  97.88494
## Mar 2017       44.00505 15.971691  72.03841   1.1317266  86.87838
## Apr 2017       40.61637 13.927561  67.30518  -0.2006401  81.43338
## May 2017       55.86537 20.412430  91.31831   1.6447778 110.08596
## Jun 2017       54.68435 19.250082  90.11861   0.4923144 108.87638
## Jul 2017       52.65947 17.701837  87.61710  -0.8036154 106.12255
## Aug 2017       55.58047 18.506036  92.65491  -1.1199844 112.28093
## Sep 2017       44.20507 12.295141  76.11500  -4.5969561  93.00710
## Oct 2017       60.32726 19.777725 100.87680  -1.6879019 122.34242
## Nov 2017       38.34598  7.843369  68.84860  -8.3037387  84.99570
## Dec 2017       41.94738  9.447199  74.44757  -7.7573587  91.65213
## Jan 2018       36.60156  6.016891  67.18623 -10.1736539  83.37677
## Feb 2018       50.40866 13.226255  87.59107  -6.4569230 107.27425
## Mar 2018       44.00505  9.253128  78.75698  -9.1434302  97.15354
## Apr 2018       40.61637  6.895703  74.33703 -10.9549392  92.18768
## May 2018       55.86537 14.820454  96.91029  -6.9074123 118.63815
## Jun 2018       54.68435 13.618863  95.74983  -8.1198914 117.48859
## Jul 2018       52.65947 11.967527  93.35141  -9.5734854 114.89242
## Aug 2018       55.58047 13.020067  98.14088  -9.5100502 120.67099
## Sep 2018       44.20507  6.019263  82.39088 -14.1950830 102.60523
## Oct 2018       60.32726 14.640561 106.01396  -9.5445166 130.19904

Quarterly

CCquarterly <- aggregate(CC, nfrequency=4)
CCquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   53   64   65   48
## 2013   81   62   81   58
## 2014   28   86   96   35
## 2015   37  111  154  176
## 2016  100  124  185
CCDataA <- window(CCquarterly)
CCfitA <- ets(CCDataA)
summary(CCfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = CCDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.3068 
## 
##   Initial states:
##     l = 45.0414 
## 
##   sigma:  0.5358
## 
##      AIC     AICc      BIC 
## 198.2023 199.8023 201.0357 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 15.98379 38.86408 30.67573 0.9510692 39.28377 0.9004618
##                   ACF1
## Training set 0.1845802
CCDecomp <- decompose(CCquarterly)
CCDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   53   64   65   48
## 2013   81   62   81   58
## 2014   28   86   96   35
## 2015   37  111  154  176
## 2016  100  124  185     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -25.971354   8.070312  20.497396  -2.596354
## 2013 -25.971354   8.070312  20.497396  -2.596354
## 2014 -25.971354   8.070312  20.497396  -2.596354
## 2015 -25.971354   8.070312  20.497396  -2.596354
## 2016 -25.971354   8.070312  20.497396           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  61.000  64.250
## 2013  66.000  69.250  63.875  60.250
## 2014  65.125  64.125  62.375  66.625
## 2015  77.000 101.875 127.375 136.875
## 2016 142.375      NA      NA        
## 
## $random
##             Qtr1        Qtr2        Qtr3        Qtr4
## 2012          NA          NA -16.4973958 -13.6536458
## 2013  40.9713542 -15.3203125  -3.3723958   0.3463542
## 2014 -11.1536458  13.8046875  13.1276042 -29.0286458
## 2015 -14.0286458   1.0546875   6.1276042  41.7213542
## 2016 -16.4036458          NA          NA            
## 
## $figure
## [1] -25.971354   8.070312  20.497396  -2.596354
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(CCDecomp)

forecast(CCfitA)
##         Point Forecast     Lo 80    Hi 80      Lo 95    Hi 95
## 2016 Q4       138.2269 43.320256 233.1336  -6.920288 283.3741
## 2017 Q1       138.2269 37.734376 238.7194 -15.463154 291.9170
## 2017 Q2       138.2269 32.303717 244.1501 -23.768632 300.2224
## 2017 Q3       138.2269 27.001954 249.4519 -31.876978 308.3308
## 2017 Q4       138.2269 21.807960 254.6458 -39.820505 316.2743
## 2018 Q1       138.2269 16.704457 259.7494 -47.625641 324.0794
## 2018 Q2       138.2269 11.677082 264.7767 -55.314347 331.7682
## 2018 Q3       138.2269  6.713733 269.7401 -62.905134 339.3589
DD <- ts(c(15,25,22,20,30,35,30,48,27,23,25,13
,23,17,26,35,34,39,41,29,27,25,29,19
,20,20,21,35,32,52,58,42,42,30,30,39
,25,26,48,47,33,56,48,58,81,48,56,30,15,24,30,16,16,39,41,58,53,46), start = c(2012,1), frequency = 12)
DDData <- window(DD)
DDfit <- ets(DDData)
summary(DDfit)
## ETS(M,N,M) 
## 
## Call:
##  ets(y = DDData) 
## 
##   Smoothing parameters:
##     alpha = 0.171 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 28.0393 
##     s=0.7311 0.9579 0.9549 1.3279 1.3438 1.2214
##            1.3056 0.9407 0.9978 0.8951 0.6837 0.64
## 
##   sigma:  0.263
## 
##      AIC     AICc      BIC 
## 510.2532 521.6818 541.1599 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 1.180512 9.056773 6.863269 -4.473593 22.83321 0.6482759
##                  ACF1
## Training set 0.319248
plot(DDfit)

plot(forecast(DDfit,h=8),
  ylab="Forecasted Demand")

forecast(DDfit)
##          Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
## Nov 2016       35.84138 23.76095 47.92182 17.365951 54.31681
## Dec 2016       27.35681 17.99309 36.72052 13.036237 41.67738
## Jan 2017       23.94722 15.62697 32.26746 11.222497 36.67194
## Feb 2017       25.58263 16.56384 34.60142 11.789577 39.37569
## Mar 2017       33.49338 21.51722 45.46954 15.177420 51.80933
## Apr 2017       37.33403 23.79894 50.86912 16.633891 58.03416
## May 2017       35.19717 22.26379 48.13056 15.417266 54.97708
## Jun 2017       48.85398 30.66491 67.04306 21.036198 76.67177
## Jul 2017       45.70560 28.46902 62.94217 19.344525 72.06667
## Aug 2017       50.28323 31.08119 69.48527 20.916240 79.65022
## Sep 2017       49.68628 30.47834 68.89423 20.310269 79.06230
## Oct 2017       35.73198 21.75206 49.71190 14.351537 57.11242
## Nov 2017       35.84143 21.65312 50.02973 14.142286 57.54056
## Dec 2017       27.35684 16.40225 38.31143 10.603246 44.11043
## Jan 2018       23.94725 14.24956 33.64493  9.115908 38.77858
## Feb 2018       25.58266 15.10792 36.05740  9.562927 41.60240
## Mar 2018       33.49342 19.63071 47.35613 12.292232 54.69460
## Apr 2018       37.33407 21.71716 52.95098 13.450070 61.21807
## May 2018       35.19722 20.32031 50.07412 12.444950 57.94948
## Jun 2018       48.85404 27.99298 69.71510 16.949806 80.75828
## Jul 2018       45.70565 25.99244 65.41886 15.556901 75.85440
## Aug 2018       50.28329 28.38119 72.18539 16.786921 83.77966
## Sep 2018       49.68634 27.83392 71.53876 16.265949 83.10674
## Oct 2018       35.73202 19.86669 51.59736 11.468091 59.99595

Quarterly

DDquarterly <- aggregate(DD, nfrequency=4)
DDquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   62   85  105   61
## 2013   66  108   97   73
## 2014   61  119  142   99
## 2015   99  136  187  134
## 2016   69   71  152
DDDataA <- window(DDquarterly)
DDfitA <- ets(DDDataA)
summary(DDfitA)
## ETS(M,N,M) 
## 
## Call:
##  ets(y = DDDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.4606 
##     gamma = 2e-04 
## 
##   Initial states:
##     l = 85.0421 
##     s=0.8576 1.3287 1.0887 0.725
## 
##   sigma:  0.1998
## 
##      AIC     AICc      BIC 
## 181.7044 191.8862 188.3155 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 2.367837 22.07567 16.89398 -1.675061 17.82908 0.6351122
##                   ACF1
## Training set 0.1128718
DDDecomp <- decompose(DDquarterly)
DDDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   62   85  105   61
## 2013   66  108   97   73
## 2014   61  119  142   99
## 2015   99  136  187  134
## 2016   69   71  152     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012 -30.55208  12.81250  29.26042 -11.52083
## 2013 -30.55208  12.81250  29.26042 -11.52083
## 2014 -30.55208  12.81250  29.26042 -11.52083
## 2015 -30.55208  12.81250  29.26042 -11.52083
## 2016 -30.55208  12.81250  29.26042          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  78.750  82.125
## 2013  84.000  84.500  85.375  86.125
## 2014  93.125 102.000 110.000 116.875
## 2015 124.625 134.625 135.250 123.375
## 2016 110.875      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA  -3.010417  -9.604167
## 2013  12.552083  10.687500 -17.635417  -1.604167
## 2014  -1.572917   4.187500   2.739583  -6.354167
## 2015   4.927083 -11.437500  22.489583  22.145833
## 2016 -11.322917         NA         NA           
## 
## $figure
## [1] -30.55208  12.81250  29.26042 -11.52083
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(DDDecomp)

EE<- ts(c(32,16,21,23,41,72,42,37,62,32,40,33
, 54,28,57,28,31,44,25,27,38,32,31,33
, 32,19,24,21,31,27,44,40,50,38,21,32, 17,19,28,21,31,25,56,32,49,36,34,23,25,34,39,39,74,65,40,47,35
), start = c(2012,1), frequency = 12)
EEData <- window(EE)
EEfit <- ets(EEData)
summary(EEfit)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = EEData) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 35.5607 
## 
##   sigma:  0.3692
## 
##      AIC     AICc      BIC 
## 529.9763 530.4291 536.1054 
## 
## Training set error measures:
##                       ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.002482662 13.12759 10.03836 -13.12327 31.20605 0.7952925
##                   ACF1
## Training set 0.2986171
plot(EEfit)

plot(forecast(EEfit,h=8),
  ylab="Forecasted Demand")

forecast(EEfit)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Oct 2016       35.56071 18.73548 52.38593 9.828742 61.29267
## Nov 2016       35.56071 18.73548 52.38593 9.828742 61.29267
## Dec 2016       35.56071 18.73548 52.38593 9.828741 61.29267
## Jan 2017       35.56071 18.73548 52.38593 9.828741 61.29267
## Feb 2017       35.56071 18.73548 52.38593 9.828741 61.29267
## Mar 2017       35.56071 18.73548 52.38593 9.828741 61.29267
## Apr 2017       35.56071 18.73548 52.38593 9.828741 61.29267
## May 2017       35.56071 18.73548 52.38593 9.828741 61.29267
## Jun 2017       35.56071 18.73548 52.38593 9.828741 61.29267
## Jul 2017       35.56071 18.73548 52.38593 9.828740 61.29267
## Aug 2017       35.56071 18.73548 52.38593 9.828740 61.29267
## Sep 2017       35.56071 18.73548 52.38593 9.828740 61.29267
## Oct 2017       35.56071 18.73548 52.38593 9.828740 61.29267
## Nov 2017       35.56071 18.73548 52.38593 9.828740 61.29267
## Dec 2017       35.56071 18.73548 52.38593 9.828740 61.29267
## Jan 2018       35.56071 18.73548 52.38593 9.828740 61.29267
## Feb 2018       35.56071 18.73548 52.38593 9.828739 61.29267
## Mar 2018       35.56071 18.73548 52.38593 9.828739 61.29267
## Apr 2018       35.56071 18.73548 52.38594 9.828739 61.29267
## May 2018       35.56071 18.73548 52.38594 9.828739 61.29267
## Jun 2018       35.56071 18.73548 52.38594 9.828739 61.29267
## Jul 2018       35.56071 18.73548 52.38594 9.828739 61.29267
## Aug 2018       35.56071 18.73548 52.38594 9.828739 61.29267
## Sep 2018       35.56071 18.73548 52.38594 9.828738 61.29267

Quarterly

EEquarterly <- aggregate(EE, nfrequency=4)
EEquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   69  136  141  105
## 2013  139  103   90   96
## 2014   75   79  134   91
## 2015   64   77  137   93
## 2016   98  178  122
EEDataA <- window(EEquarterly)
EEfitA <- ets(EEDataA)
summary(EEfitA)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = EEDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 106.6806 
## 
##   sigma:  29.8062
## 
##      AIC     AICc      BIC 
## 190.9436 192.5436 193.7769 
## 
## Training set error measures:
##                       ME     RMSE      MAE       MPE    MAPE      MASE
## Training set 0.005122846 29.80621 25.28547 -7.812693 25.1084 0.8104318
##                    ACF1
## Training set 0.06838643
EEDecomp <- decompose(EEquarterly)
EEDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   69  136  141  105
## 2013  139  103   90   96
## 2014   75   79  134   91
## 2015   64   77  137   93
## 2016   98  178  122     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012 -9.182292 -9.859375 25.255208 -6.213542
## 2013 -9.182292 -9.859375 25.255208 -6.213542
## 2014 -9.182292 -9.859375 25.255208 -6.213542
## 2015 -9.182292 -9.859375 25.255208 -6.213542
## 2016 -9.182292 -9.859375 25.255208          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA 121.500 126.125
## 2013 115.625 108.125  99.000  88.000
## 2014  90.500  95.375  93.375  91.750
## 2015  91.875  92.500  97.000 113.875
## 2016 124.625      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA  -5.755208 -14.911458
## 2013  32.557292   4.734375 -34.255208  14.213542
## 2014  -6.317708  -6.515625  15.369792   5.463542
## 2015 -18.692708  -5.640625  14.744792 -14.661458
## 2016 -17.442708         NA         NA           
## 
## $figure
## [1] -9.182292 -9.859375 25.255208 -6.213542
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(EEDecomp)

FFF <- ts(c(14,6,13,23,18,14,11,47,72,21,23,17
,19,16,19,14,32,18,19,17,23,34,36,12
,24,14,26,22,18,19,35,24,37,57,33,68
,34,24,35,16,17,58,28,38,20,56,17,22,16,18,22,23,18,78,56,117,36,43), start = c(2012,1), frequency = 12)
FFData <- window(FF)
FFfit <- ets(FFData)
summary(FFfit)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = FFData) 
## 
##   Smoothing parameters:
##     alpha = 0.6804 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 109.641 
##     b = 11.8682 
## 
##   sigma:  0.2475
## 
##      AIC     AICc      BIC 
## 741.7355 742.8893 752.0377 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -8.820438 79.38034 61.34659 -8.419909 23.66188 0.6193905
##                   ACF1
## Training set 0.1044451
plot(FFfit)

plot(forecast(FFfit,h=8),
  ylab="Forecasted Demand")

forecast(FFfit)
##          Point Forecast      Lo 80     Hi 80       Lo 95     Hi 95
## Nov 2016       460.5441 314.474335  606.6138  237.149678  683.9385
## Dec 2016       472.3612 290.885315  653.8370  194.817809  749.9045
## Jan 2017       484.1782 271.095019  697.2614  158.295587  810.0608
## Feb 2017       495.9953 253.534285  738.4563  125.183186  866.8074
## Mar 2017       507.8123 237.402879  778.2218   94.256753  921.3679
## Apr 2017       519.6294 222.229762  817.0291   64.795896  974.4629
## May 2017       531.4465 207.711138  855.1818   36.336002 1026.5570
## Jun 2017       543.2635 193.638113  892.8890    8.557591 1077.9695
## Jul 2017       555.0806 179.860014  930.3012  -18.769769 1128.9310
## Aug 2017       566.8977 166.264032  967.5313  -45.818605 1179.6139
## Sep 2017       578.7147 152.763123 1004.6663  -72.722040 1230.1515
## Oct 2017       590.5318 139.288418 1041.7752  -99.585400 1280.6490
## Nov 2017       602.3489 125.784254 1078.9135 -126.493813 1331.1915
## Dec 2017       614.1659 112.204803 1116.1271 -153.517367 1381.8492
## Jan 2018       625.9830  98.511717 1153.4543 -180.714712 1432.6807
## Feb 2018       637.8001  84.672431 1190.9277 -208.135650 1483.7358
## Mar 2018       649.6171  70.658927 1228.5753 -235.823030 1535.0573
## Apr 2018       661.4342  56.446808 1266.4216 -263.814167 1586.6825
## May 2018       673.2513  42.014588 1304.4879 -292.141919 1638.6444
## Jun 2018       685.0683  27.343154 1342.7935 -320.835518 1690.9722
## Jul 2018       696.8854  12.415334 1381.3554 -349.921223 1743.6920
## Aug 2018       708.7024  -2.784432 1420.1893 -379.422836 1796.8277
## Sep 2018       720.5195 -18.270369 1459.3094 -409.362109 1850.4011
## Oct 2018       732.3366 -34.055582 1498.7287 -439.759085 1904.4322

Quarterly

FFFquarterly <- aggregate(FFF, nfrequency=4)
FFFquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   33   55  130   61
## 2013   54   64   59   82
## 2014   64   59   96  158
## 2015   93   91   86   95
## 2016   56  119  209
FFFDataA <- window(FFFquarterly)
FFFfitA <- ets(FFFDataA)
summary(FFFfitA)
## ETS(M,N,N) 
## 
## Call:
##  ets(y = FFFDataA) 
## 
##   Smoothing parameters:
##     alpha = 0.1584 
## 
##   Initial states:
##     l = 71.6644 
## 
##   sigma:  0.5329
## 
##      AIC     AICc      BIC 
## 202.1124 203.7124 204.9457 
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 12.03473 41.14466 27.19462 -1.934132 29.64645 0.7131456
##                   ACF1
## Training set 0.0998291
FFFDecomp <- decompose(FFFquarterly)
FFFDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   33   55  130   61
## 2013   54   64   59   82
## 2014   64   59   96  158
## 2015   93   91   86   95
## 2016   56  119  209     
## 
## $seasonal
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012 -20.098958  -9.609375  13.088542  16.619792
## 2013 -20.098958  -9.609375  13.088542  16.619792
## 2014 -20.098958  -9.609375  13.088542  16.619792
## 2015 -20.098958  -9.609375  13.088542  16.619792
## 2016 -20.098958  -9.609375  13.088542           
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  72.375  76.125
## 2013  68.375  62.125  66.000  66.625
## 2014  70.625  84.750  97.875 105.500
## 2015 108.250  99.125  86.625  85.500
## 2016 104.375      NA      NA        
## 
## $random
##            Qtr1       Qtr2       Qtr3       Qtr4
## 2012         NA         NA  44.536458 -31.744792
## 2013   5.723958  11.484375 -20.088542  -1.244792
## 2014  13.473958 -16.140625 -14.963542  35.880208
## 2015   4.848958   1.484375 -13.713542  -7.119792
## 2016 -28.276042         NA         NA           
## 
## $figure
## [1] -20.098958  -9.609375  13.088542  16.619792
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(FFFDecomp)

forecast(FFFfitA)
##         Point Forecast    Lo 80    Hi 80      Lo 95    Hi 95
## 2016 Q4       107.8765 34.20139 181.5516  -4.799854 220.5528
## 2017 Q1       107.8765 33.02452 182.7285  -6.599719 222.3527
## 2017 Q2       107.8765 31.85768 183.8953  -8.384245 224.1372
## 2017 Q3       107.8765 30.70036 185.0526 -10.154216 225.9072
## 2017 Q4       107.8765 29.55208 186.2009 -11.910363 227.6633
## 2018 Q1       107.8765 28.41239 187.3406 -13.653372 229.4064
## 2018 Q2       107.8765 27.28086 188.4721 -15.383888 231.1369
## 2018 Q3       107.8765 26.15711 189.5959 -17.102513 232.8555
GG <- ts(c(17,23,32,65,16,33,8,11,40,36,27,25
,16,39,22,72,25,14,32,39,32,20,9,32
,9,27,16,12,31,18,41,21,30,56,25,37
,8,18,28,34,23,20,44,36,64,44,28,28,38,40,36,29,43,47,27,45,24,15), start = c(2012,1), frequency = 12)
GGData <- window(GG)
GGfit <- ets(GGData)
summary(GGfit)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = GGData) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 29.7751 
## 
##   sigma:  13.9551
## 
##      AIC     AICc      BIC 
## 547.2638 547.7082 553.4451 
## 
## Training set error measures:
##                       ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.004685413 13.95511 10.82969 -29.56022 52.07473 0.7315212
##                   ACF1
## Training set 0.0249865
plot(GGfit)

plot(forecast(GGfit,h=8),
  ylab="Forecasted Demand")

forecast(GGfit)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2016       29.77516 11.89097 47.65935 2.423646 57.12667
## Dec 2016       29.77516 11.89097 47.65935 2.423646 57.12667
## Jan 2017       29.77516 11.89097 47.65935 2.423646 57.12667
## Feb 2017       29.77516 11.89097 47.65935 2.423646 57.12667
## Mar 2017       29.77516 11.89097 47.65935 2.423646 57.12667
## Apr 2017       29.77516 11.89097 47.65935 2.423646 57.12667
## May 2017       29.77516 11.89097 47.65935 2.423646 57.12667
## Jun 2017       29.77516 11.89097 47.65935 2.423645 57.12667
## Jul 2017       29.77516 11.89097 47.65935 2.423645 57.12667
## Aug 2017       29.77516 11.89097 47.65935 2.423645 57.12667
## Sep 2017       29.77516 11.89097 47.65935 2.423645 57.12667
## Oct 2017       29.77516 11.89097 47.65935 2.423645 57.12667
## Nov 2017       29.77516 11.89096 47.65935 2.423645 57.12667
## Dec 2017       29.77516 11.89096 47.65935 2.423645 57.12667
## Jan 2018       29.77516 11.89096 47.65935 2.423644 57.12667
## Feb 2018       29.77516 11.89096 47.65935 2.423644 57.12667
## Mar 2018       29.77516 11.89096 47.65935 2.423644 57.12667
## Apr 2018       29.77516 11.89096 47.65935 2.423644 57.12667
## May 2018       29.77516 11.89096 47.65935 2.423644 57.12667
## Jun 2018       29.77516 11.89096 47.65935 2.423644 57.12667
## Jul 2018       29.77516 11.89096 47.65935 2.423644 57.12667
## Aug 2018       29.77516 11.89096 47.65935 2.423643 57.12667
## Sep 2018       29.77516 11.89096 47.65935 2.423643 57.12667
## Oct 2018       29.77516 11.89096 47.65935 2.423643 57.12667

Quarterly

GGquarterly <- aggregate(GG, nfrequency=4)
GGquarterly
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   72  114   59   88
## 2013   77  111  103   61
## 2014   52   61   92  118
## 2015   54   77  144  100
## 2016  114  119   96
GGDataA <- window(GGquarterly)
GGfitA <- ets(GGDataA)
summary(GGfitA)
## ETS(A,N,N) 
## 
## Call:
##  ets(y = GGDataA) 
## 
##   Smoothing parameters:
##     alpha = 1e-04 
## 
##   Initial states:
##     l = 90.0927 
## 
##   sigma:  25.6423
## 
##      AIC     AICc      BIC 
## 185.2256 186.8256 188.0589 
## 
## Training set error measures:
##                      ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 0.01737616 25.64232 22.10157 -9.09305 27.71113 0.7207035
##                   ACF1
## Training set 0.0915364
GGDecomp <- decompose(GGquarterly)
GGDecomp
## $x
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2012   72  114   59   88
## 2013   77  111  103   61
## 2014   52   61   92  118
## 2015   54   77  144  100
## 2016  114  119   96     
## 
## $seasonal
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012 -14.78125  -2.50000  13.25000   4.03125
## 2013 -14.78125  -2.50000  13.25000   4.03125
## 2014 -14.78125  -2.50000  13.25000   4.03125
## 2015 -14.78125  -2.50000  13.25000   4.03125
## 2016 -14.78125  -2.50000  13.25000          
## 
## $trend
##         Qtr1    Qtr2    Qtr3    Qtr4
## 2012      NA      NA  83.875  84.125
## 2013  89.250  91.375  84.875  75.500
## 2014  67.875  73.625  81.000  83.250
## 2015  91.750  96.000 101.250 114.000
## 2016 113.250      NA      NA        
## 
## $random
##           Qtr1      Qtr2      Qtr3      Qtr4
## 2012        NA        NA -38.12500  -0.15625
## 2013   2.53125  22.12500   4.87500 -18.53125
## 2014  -1.09375 -10.12500  -2.25000  30.71875
## 2015 -22.96875 -16.50000  29.50000 -18.03125
## 2016  15.53125        NA        NA          
## 
## $figure
## [1] -14.78125  -2.50000  13.25000   4.03125
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(GGDecomp)

forecast(GGfitA)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2016 Q4       90.09275 57.23079 122.9547 39.83472 140.3508
## 2017 Q1       90.09275 57.23079 122.9547 39.83472 140.3508
## 2017 Q2       90.09275 57.23079 122.9547 39.83472 140.3508
## 2017 Q3       90.09275 57.23079 122.9547 39.83472 140.3508
## 2017 Q4       90.09275 57.23079 122.9547 39.83472 140.3508
## 2018 Q1       90.09275 57.23079 122.9547 39.83472 140.3508
## 2018 Q2       90.09275 57.23079 122.9547 39.83472 140.3508
## 2018 Q3       90.09275 57.23079 122.9547 39.83472 140.3508

Very Helpful Code

# Data for modeling
A.mod <- window(A,end = c(2015,11))

#Data for testing
coil.test <- window(A,start=c(2015,12))

# Model using multiple methods - arima, expo smooth, theta, random walk, structural time series

#HW
coil.arima <- forecast(HoltWinters(A.mod, alpha = 0.001, beta = 8e-04, gamma = 1e-04),h=11)

#exponential smoothing
coil.ets <- forecast(ets(A.mod),h=11)


#random walk
coil.rwf <- rwf(A.mod, h=11)

#structts
coil.struc <- forecast(StructTS(A.mod),h=11)

#snaive
coil.naiv <- forecast(snaive(A.mod))
#exp sm
coil.ses <- forecast(ses(A.mod))


##accuracy 

arm.acc <- accuracy(coil.arima,coil.test)
ets.acc <- accuracy(coil.ets,coil.test)

rwf.acc <- accuracy(coil.rwf,coil.test)
str.acc <- accuracy(coil.struc,coil.test)
naiv.acc <- accuracy(coil.naiv, coil.test)
ses.acc <- accuracy(coil.ses, coil.test)


arm.acc
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set  107.2353 324.2152 256.6859  4.145135 13.91524 0.6527652
## Test set     -124.3202 403.0288 311.7312 -6.392579 13.14547 0.7927481
##                    ACF1 Theil's U
## Training set  0.3467567        NA
## Test set     -0.1046235 0.9334408
ets.acc
##                     ME     RMSE      MAE        MPE     MAPE      MASE
## Training set  40.62123 323.9361 258.4090  0.2007258 14.51994 0.6571472
## Test set     -46.05273 353.2799 279.4924 -4.0465514 12.07098 0.7107632
##                      ACF1 Theil's U
## Training set -0.009873886        NA
## Test set      0.335816969 0.9718275
rwf.acc
##                     ME     RMSE      MAE         MPE     MAPE      MASE
## Training set  27.71739 339.1818 282.8478 -0.08880283 15.92658 0.7192962
## Test set     103.36364 365.1985 285.1818  2.17589329 11.60619 0.7252317
##                    ACF1 Theil's U
## Training set -0.2334444        NA
## Test set      0.3358170 0.9149744
str.acc
##                         ME        RMSE         MAE          MPE
## Training set    0.08646065   0.9892994   0.7885775 -0.001839906
## Test set     -166.78099246 364.4296394 302.4948699 -8.796129458
##                     MAPE        MASE       ACF1 Theil's U
## Training set  0.04535497 0.002005392 0.02388733        NA
## Test set     13.33059724 0.769259642 0.17317454  1.038241
ses.acc
##                     ME     RMSE      MAE        MPE     MAPE      MASE
## Training set  40.63588 323.9361 258.4108  0.2010311 14.52003 0.6571516
## Test set     -39.51199 368.8241 296.2000 -3.9840363 12.80742 0.7532515
##                      ACF1 Theil's U
## Training set -0.009660471        NA
## Test set      0.349437049  0.988784

Trend Additive: A Multiplicative:

Seasonal Additive: Multiplicative:A