Binary Assignments

See this link: http://lavaan.ugent.be/tutorial/growth.html

Model 1

### Model

    LG.mod.full <- '
              int=~1*ALAQSUM+1*CLAQSUM+1*DLAQSUM
              slope=~-2*ALAQSUM+-1*CLAQSUM+0*DLAQSUM
              
              int+slope~rndcode.binary
              int+slope~ED.binary
              int+slope~AYPSTAVG.gmc
              
              #int+slope~AAUDITTot.gmc
              int+slope~AFEMALE.binary
              
              #int+slope~Tx_Audit_Int
              #int+slope~Tx_AYPST_INT

              #ALAQSUM~~CLAQSUM
              #CLAQSUM~~DLAQSUM

              '
        
    fit.full <- growth(LG.mod.full, data=A1.tm, missing="ml")
    summary(fit.full, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-22) converged normally after 156 iterations
## 
##   Number of observations                          1181
## 
##   Number of missing patterns                        11
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                7.039
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.218
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              746.487
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.997
##   Tucker-Lewis Index (TLI)                       0.992
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA
##   Loglikelihood unrestricted model (H1)             NA
## 
##   Number of free parameters                         16
##   Akaike (AIC)                                      NA
##   Bayesian (BIC)                                    NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.019
##   90 Percent Confidence Interval          0.000  0.047
##   P-value RMSEA <= 0.05                          0.966
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.012
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               8.438    0.942
##     CLAQSUM           1.000                               8.438    0.815
##     DLAQSUM           1.000                               8.438    0.880
##   slope =~                                                              
##     ALAQSUM          -2.000                              -7.441   -0.831
##     CLAQSUM          -1.000                              -3.721   -0.359
##     DLAQSUM           0.000                               0.000    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~                                                                 
##     rndcode.binary    1.074    0.624    1.720    0.085    0.127    0.059
##   slope ~                                                               
##     rndcode.binary   -0.090    0.335   -0.269    0.788   -0.024   -0.011
##   int ~                                                                 
##     ED.binary         8.985    0.808   11.121    0.000    1.065    0.401
##   slope ~                                                               
##     ED.binary         3.058    0.436    7.020    0.000    0.822    0.309
##   int ~                                                                 
##     AYPSTAVG.gmc     -0.614    1.037   -0.592    0.554   -0.073   -0.025
##   slope ~                                                               
##     AYPSTAVG.gmc     -1.232    0.548   -2.249    0.024   -0.331   -0.112
##   int ~                                                                 
##     AFEMALE.binary   -1.731    0.604   -2.864    0.004   -0.205   -0.101
##   slope ~                                                               
##     AFEMALE.binary   -0.142    0.324   -0.438    0.661   -0.038   -0.019
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .int ~~                                                                
##    .slope            13.203    2.949    4.477    0.000    0.489    0.489
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##    .int              44.919    0.829   54.194    0.000    5.324    5.324
##    .slope            -4.519    0.445  -10.147    0.000   -1.215   -1.215
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          22.154    4.889    4.531    0.000   22.154    0.276
##    .CLAQSUM          56.436    3.341   16.891    0.000   56.436    0.526
##    .DLAQSUM          20.773    5.104    4.070    0.000   20.773    0.226
##    .int              59.134    5.751   10.283    0.000    0.831    0.831
##    .slope            12.347    2.395    5.156    0.000    0.892    0.892
    #parTable(fit.full)

Simple Slopes for education model

# Simple Slopes Model

    LG.mod.ed.ss <- '
              int=~1*ALAQSUM+1*CLAQSUM+1*DLAQSUM
              slope=~-2*ALAQSUM+-1*CLAQSUM+0*DLAQSUM
              '
    fit.ed.ss <- growth(LG.mod.ed.ss, data=A1.tm, missing="ml",group="ED.binary")
    summary(fit.ed.ss, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-22) converged normally after 182 iterations
## 
##   Number of observations per group         
##   1                                                709
##   0                                                146
## 
##   Number of missing patterns per group     
##   1                                                  4
##   0                                                  2
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.267
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.875
## 
## Chi-square for each group:
## 
##   1                                              0.259
##   0                                              0.008
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              561.335
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.009
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -8884.625
##   Loglikelihood unrestricted model (H1)      -8884.491
## 
##   Number of free parameters                         16
##   Akaike (AIC)                               17801.249
##   Bayesian (BIC)                             17877.267
##   Sample-size adjusted Bayesian (BIC)        17826.455
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.048
##   P-value RMSEA <= 0.05                          0.954
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.004
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               7.518    0.869
##     CLAQSUM           1.000                               7.518    0.773
##     DLAQSUM           1.000                               7.518    0.839
##   slope =~                                                              
##     ALAQSUM          -2.000                              -6.925   -0.801
##     CLAQSUM          -1.000                              -3.463   -0.356
##     DLAQSUM           0.000                               0.000    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~~                                                                
##     slope            11.020    2.986    3.690    0.000    0.423    0.423
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##     int              53.230    0.333  159.986    0.000    7.080    7.080
##     slope            -1.633    0.175   -9.354    0.000   -0.472   -0.472
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          14.431    5.106    2.827    0.005   14.431    0.193
##    .CLAQSUM          48.138    3.384   14.224    0.000   48.138    0.509
##    .DLAQSUM          23.834    5.297    4.500    0.000   23.834    0.297
##     int              56.525    5.958    9.486    0.000    1.000    1.000
##     slope            11.990    2.490    4.815    0.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               8.012    0.787
##     CLAQSUM           1.000                               8.012    0.722
##     DLAQSUM           1.000                               8.012    0.901
##   slope =~                                                              
##     ALAQSUM          -2.000                              -6.028   -0.592
##     CLAQSUM          -1.000                              -3.014   -0.272
##     DLAQSUM           0.000                               0.000    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~~                                                                
##     slope            18.592    9.980    1.863    0.062    0.770    0.770
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##     int              44.488    0.734   60.604    0.000    5.553    5.553
##     slope            -4.644    0.454  -10.220    0.000   -1.541   -1.541
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          77.445   19.404    3.991    0.000   77.445    0.747
##    .CLAQSUM          86.988   12.565    6.923    0.000   86.988    0.707
##    .DLAQSUM          14.948   15.903    0.940    0.347   14.948    0.189
##     int              64.193   17.501    3.668    0.000    1.000    1.000
##     slope             9.085    7.924    1.147    0.252    1.000    1.000
## 'data.frame':    6 obs. of  4 variables:
##  $ group1: Factor w/ 2 levels "Non-student",..: 1 1 1 2 2 2
##  $ mean  : num  53.8 49.2 44.5 56.5 54.8 ...
##  $ se    : num  0.845 0.969 0.739 0.325 0.373 ...
##  $ Time  : num  0 6 12 0 6 12

Model 2 Full model with interaction term and AAUDITitot

## lavaan (0.5-22) converged normally after 168 iterations
## 
##   Number of observations                          1181
## 
##   Number of missing patterns                        16
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                8.545
##   Degrees of freedom                                 7
##   P-value (Chi-square)                           0.287
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              763.006
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.998
##   Tucker-Lewis Index (TLI)                       0.994
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA
##   Loglikelihood unrestricted model (H1)             NA
## 
##   Number of free parameters                         20
##   Akaike (AIC)                                      NA
##   Bayesian (BIC)                                    NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.014
##   90 Percent Confidence Interval          0.000  0.040
##   P-value RMSEA <= 0.05                          0.993
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.010
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               8.432    0.941
##     CLAQSUM           1.000                               8.432    0.815
##     DLAQSUM           1.000                               8.432    0.879
##   slope =~                                                              
##     ALAQSUM          -2.000                              -7.431   -0.830
##     CLAQSUM          -1.000                              -3.715   -0.359
##     DLAQSUM           0.000                               0.000    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~                                                                 
##     rndcode.binary    1.032    0.626    1.649    0.099    0.122    0.057
##   slope ~                                                               
##     rndcode.binary   -0.122    0.336   -0.364    0.716   -0.033   -0.015
##   int ~                                                                 
##     ED.binary         8.990    0.807   11.137    0.000    1.066    0.401
##   slope ~                                                               
##     ED.binary         3.056    0.435    7.030    0.000    0.823    0.310
##   int ~                                                                 
##     AYPSTAVG.gmc     -1.088    1.184   -0.919    0.358   -0.129   -0.043
##   slope ~                                                               
##     AYPSTAVG.gmc     -1.384    0.626   -2.212    0.027   -0.373   -0.126
##   int ~                                                                 
##     AAUDITTot.gmc     0.171    0.115    1.492    0.136    0.020    0.074
##   slope ~                                                               
##     AAUDITTot.gmc     0.089    0.062    1.434    0.152    0.024    0.088
##   int ~                                                                 
##     AFEMALE.binary   -1.727    0.604   -2.860    0.004   -0.205   -0.101
##   slope ~                                                               
##     AFEMALE.binary   -0.152    0.323   -0.471    0.637   -0.041   -0.020
##   int ~                                                                 
##     Tx_AYPST_INT     -0.227    0.187   -1.217    0.223   -0.027   -0.057
##   slope ~                                                               
##     Tx_AYPST_INT     -0.196    0.101   -1.948    0.051   -0.053   -0.111
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .int ~~                                                                
##    .slope            13.008    2.946    4.416    0.000    0.486    0.486
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##    .int              44.918    0.828   54.232    0.000    5.327    5.327
##    .slope            -4.503    0.444  -10.130    0.000   -1.212   -1.212
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          22.275    4.886    4.559    0.000   22.275    0.278
##    .CLAQSUM          56.366    3.338   16.884    0.000   56.366    0.526
##    .DLAQSUM          20.904    5.103    4.096    0.000   20.904    0.227
##    .int              58.827    5.742   10.245    0.000    0.827    0.827
##    .slope            12.167    2.393    5.084    0.000    0.881    0.881