This is just an example comparative boxplot, don’t worry about the code (It’s just there for those who are interested!) - what we’re interested in is how boxplots can be useful to understand data.
First we pull the data from the google form in
aei_spring1 <- read.csv('https://docs.google.com/spreadsheets/d/1dZm2G6us40__A4tBr5SZj-LQEMSMv3h5fr5xxASltlU/export?gid=1383463932&format=csv')
aei_spring2 <- read.csv('https://docs.google.com/spreadsheets/d/1dZm2G6us40__A4tBr5SZj-LQEMSMv3h5fr5xxASltlU/export?gid=505023461&format=csv')
For example This is the raw Spring data (before it was cleaned)
aei_spring1[c(2,3,4,5,6)]
For example This is the cleaned up spring data (changing everything to cm)
aei_spring2[c(2,3,4,5,6)]
Boxplot for the raw (uncleaned) spring data - # what problems can you immediately see? # Do you think some tables decided on a consistent measurement? # Do the boxplots help you see which groups more people used cm vs mm (e.g. what’s the difference between table 6 and table 10?)
boxplot(What.length.is.your.left.ear..from.the.top.to.the.bottom.of.the.ear.. ~ What.is.your.table.number., data = aei_spring1)

aei_spring2$What.is.your.table.number. <- paste0(aei_spring2$What.is.your.table.number.,"_clean")
head(aei_spring2$What.is.your.table.number.)
[1] "10_clean" "4_clean" "4_clean" "6_clean" "4_clean" "5_clean"
Boxplot for the raw and cleaned Spring data - makes it pretty obvious now?
aei_spring <- rbind(aei_spring1, aei_spring2)
boxplot(What.length.is.your.left.ear..from.the.top.to.the.bottom.of.the.ear.. ~ What.is.your.table.number., data = aei_spring, las=2)

Boxplot showing the cleaned Spring and summer data
aei_spr_sum <- rbind(aei_spring2, aei_summer)
boxplot(What.length.is.your.left.ear..from.the.top.to.the.bottom.of.the.ear.. ~ What.is.your.table.number., data = aei_spr_sum, las=2, par(mar = c(7,3,1,1)))

Boxplot showing the summer data - do you think it needs cleaning?

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGp1c3QgYW4gZXhhbXBsZSBjb21wYXJhdGl2ZSBib3hwbG90LCBkb24ndCB3b3JyeSBhYm91dCB0aGUgY29kZSAoSXQncyBqdXN0IHRoZXJlIGZvciB0aG9zZSB3aG8gYXJlIGludGVyZXN0ZWQhKSAtIHdoYXQgd2UncmUgaW50ZXJlc3RlZCBpbiBpcyBob3cgYm94cGxvdHMgY2FuIGJlIHVzZWZ1bCB0byB1bmRlcnN0YW5kIGRhdGEuDQoNCg0KKipGaXJzdCoqIHdlIHB1bGwgdGhlIGRhdGEgZnJvbSB0aGUgZ29vZ2xlIGZvcm0gaW4NCmBgYHtyfQ0KYWVpX3NwcmluZzEgPC0gcmVhZC5jc3YoJ2h0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kLzFkWm0yRzZ1czQwX19BNHRCcjVTWmotTFFFTVNNdjNoNWZyNXh4QVNsdGxVL2V4cG9ydD9naWQ9MTM4MzQ2MzkzMiZmb3JtYXQ9Y3N2JykNCmFlaV9zcHJpbmcyIDwtIHJlYWQuY3N2KCdodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC8xZFptMkc2dXM0MF9fQTR0QnI1U1pqLUxRRU1TTXYzaDVmcjV4eEFTbHRsVS9leHBvcnQ/Z2lkPTUwNTAyMzQ2MSZmb3JtYXQ9Y3N2JykNCmFlaV9zdW1tZXIgPC0gcmVhZC5jc3YoJ2h0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kLzFkWm0yRzZ1czQwX19BNHRCcjVTWmotTFFFTVNNdjNoNWZyNXh4QVNsdGxVL2V4cG9ydD9naWQ9MTk3NDMwNTgyMiZmb3JtYXQ9Y3N2JykNCg0KYGBgDQoNCioqRm9yIGV4YW1wbGUqKiBUaGlzIGlzIHRoZSByYXcgU3ByaW5nIGRhdGEgKGJlZm9yZSBpdCB3YXMgY2xlYW5lZCkNCmBgYHtyfQ0KYWVpX3NwcmluZzFbYygyLDMsNCw1LDYpXQ0KYGBgDQoNCioqRm9yIGV4YW1wbGUqKiBUaGlzIGlzIHRoZSBjbGVhbmVkIHVwIHNwcmluZyBkYXRhIChjaGFuZ2luZyBldmVyeXRoaW5nIHRvIGNtKQ0KYGBge3J9DQphZWlfc3ByaW5nMltjKDIsMyw0LDUsNildDQpgYGANCg0KKipCb3hwbG90IGZvciB0aGUgcmF3ICh1bmNsZWFuZWQpIHNwcmluZyBkYXRhKiogLSANCiMgd2hhdCBwcm9ibGVtcyBjYW4geW91IGltbWVkaWF0ZWx5IHNlZT8NCiMgRG8geW91IHRoaW5rIHNvbWUgdGFibGVzIGRlY2lkZWQgb24gYSBjb25zaXN0ZW50IG1lYXN1cmVtZW50Pw0KIyBEbyB0aGUgYm94cGxvdHMgaGVscCB5b3Ugc2VlIHdoaWNoIGdyb3VwcyBtb3JlIHBlb3BsZSB1c2VkIGNtIHZzIG1tIChlLmcuIHdoYXQncyB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRhYmxlIDYgYW5kIHRhYmxlIDEwPykNCmBgYHtyfQ0KYm94cGxvdChXaGF0Lmxlbmd0aC5pcy55b3VyLmxlZnQuZWFyLi5mcm9tLnRoZS50b3AudG8udGhlLmJvdHRvbS5vZi50aGUuZWFyLi4gfiBXaGF0LmlzLnlvdXIudGFibGUubnVtYmVyLiwgZGF0YSA9IGFlaV9zcHJpbmcxKQ0KYGBgDQoNCg0KYGBge3J9DQphZWlfc3ByaW5nMiRXaGF0LmlzLnlvdXIudGFibGUubnVtYmVyLiA8LSBwYXN0ZTAoYWVpX3NwcmluZzIkV2hhdC5pcy55b3VyLnRhYmxlLm51bWJlci4sIl9jbGVhbiIpDQpoZWFkKGFlaV9zcHJpbmcyJFdoYXQuaXMueW91ci50YWJsZS5udW1iZXIuKQ0KYGBgDQoNCioqQm94cGxvdCoqIGZvciB0aGUgcmF3IGBgYGFuZGBgYCBjbGVhbmVkIFNwcmluZyBkYXRhIC0gbWFrZXMgaXQgcHJldHR5IG9idmlvdXMgbm93Pw0KYGBge3J9DQphZWlfc3ByaW5nIDwtIHJiaW5kKGFlaV9zcHJpbmcxLCBhZWlfc3ByaW5nMikNCg0KYm94cGxvdChXaGF0Lmxlbmd0aC5pcy55b3VyLmxlZnQuZWFyLi5mcm9tLnRoZS50b3AudG8udGhlLmJvdHRvbS5vZi50aGUuZWFyLi4gfiBXaGF0LmlzLnlvdXIudGFibGUubnVtYmVyLiwgZGF0YSA9IGFlaV9zcHJpbmcsIGxhcz0yKQ0KYGBgDQoNCioqQm94cGxvdCoqIHNob3dpbmcgdGhlIGNsZWFuZWQgU3ByaW5nIGFuZCBzdW1tZXIgZGF0YQ0KYGBge3J9DQphZWlfc3ByX3N1bSA8LSByYmluZChhZWlfc3ByaW5nMiwgYWVpX3N1bW1lcikNCg0KYm94cGxvdChXaGF0Lmxlbmd0aC5pcy55b3VyLmxlZnQuZWFyLi5mcm9tLnRoZS50b3AudG8udGhlLmJvdHRvbS5vZi50aGUuZWFyLi4gfiBXaGF0LmlzLnlvdXIudGFibGUubnVtYmVyLiwgZGF0YSA9IGFlaV9zcHJfc3VtLCBsYXM9MiwgcGFyKG1hciA9IGMoNywzLDEsMSkpKQ0KYGBgDQoNCioqQm94cGxvdCoqIHNob3dpbmcgdGhlIHN1bW1lciBkYXRhIC0gZG8geW91IHRoaW5rIGl0IG5lZWRzIGNsZWFuaW5nPw0KYGBge3J9DQppZihucm93KGFlaV9zdW1tZXIpPjApIGJveHBsb3QoV2hhdC5sZW5ndGguaXMueW91ci5sZWZ0LmVhci4uZnJvbS50aGUudG9wLnRvLnRoZS5ib3R0b20ub2YudGhlLmVhci4uIH4gV2hhdC5pcy55b3VyLnRhYmxlLm51bWJlci4sIGRhdGEgPSBhZWlfc3VtbWVyKQ0KYGBg