While 4-5 mm thick MLC (L40 or L50) is usual for VMAT, we have been using 2.5 mm MLC (L25). So we compared dosimetric, volumetric and dose delivering parameters with them.
Twenty five cases were selected from our database. SmartArc system of Pinnacle3 was used with Novalis Tx (L25), Elekta synergy BM (L40) and Siemens® ARTISTE loaded on Varian Clinac-21EX virtually (L50). The same consolidations for optimization were used with single arc procedure.
Kruskal-Wallis Rank Sum Test (k-test) was applied to find the difference in D98, D95, D50 and D02 of PTV, rectal V40, irradiation time and MU, then Wilcoxon signed rank test examined the order along the leaf width.
To analyze relationships between these values and rectal volume overlapping PTV (ROV) grouped by L25, L40 or L50, linear regression model was employed with an analysis of covariance. We defined significant p level as <0.001.
#Data
L25vs40vs50 <- read.csv("L25vs40vs50.csv")
#
with(L25vs40vs50,kruskal.test(D98~L25vs40vs50))$p.value
## [1] 0.9428088
with(L25vs40vs50,kruskal.test(D95~L25vs40vs50))$p.value
## [1] 0.3351991
with(L25vs40vs50,kruskal.test(D50~L25vs40vs50))$p.value
## [1] 0.006568651
with(L25vs40vs50,kruskal.test(D02~L25vs40vs50))$p.value
## [1] 8.632889e-12
with(L25vs40vs50,kruskal.test(V40~L25vs40vs50))$p.value
## [1] 0.1255103
with(L25vs40vs50,kruskal.test(Time~L25vs40vs50))$p.value
## [1] 3.286513e-14
with(L25vs40vs50,kruskal.test(MU~L25vs40vs50))$p.value
## [1] 0.2729107
D02 and Time shoewd significant difference.
library("coin")
## Loading required package: survival
L25vs40<-L25vs40vs50[(L25vs40vs50$L25vs40vs50=="L25" | L25vs40vs50$L25vs40vs50=="L40"), ]
L25vs50<-L25vs40vs50[(L25vs40vs50$L25vs40vs50=="L25" | L25vs40vs50$L25vs40vs50=="L50"), ]
L40vs50<-L25vs40vs50[(L25vs40vs50$L25vs40vs50=="L40" | L25vs40vs50$L25vs40vs50=="L50"), ]
#D02
wilcox_test(D02~L25vs40vs50,data=L25vs40,paired=T)
##
## Asymptotic Wilcoxon-Mann-Whitney Test
##
## data: D02 by L25vs40vs50 (L25, L40)
## Z = -5.8308, p-value = 5.515e-09
## alternative hypothesis: true mu is not equal to 0
wilcox_test(D02~L25vs40vs50,data=L25vs50,paired=T)
##
## Asymptotic Wilcoxon-Mann-Whitney Test
##
## data: D02 by L25vs40vs50 (L25, L50)
## Z = 2.8139, p-value = 0.004895
## alternative hypothesis: true mu is not equal to 0
#Time
wilcox_test(Time~L25vs40vs50,data=L25vs40,paired=T)
##
## Asymptotic Wilcoxon-Mann-Whitney Test
##
## data: Time by L25vs40vs50 (L25, L40)
## Z = -5.5874, p-value = 2.304e-08
## alternative hypothesis: true mu is not equal to 0
wilcox_test(Time~L25vs40vs50,data=L40vs50,paired=T)
##
## Asymptotic Wilcoxon-Mann-Whitney Test
##
## data: Time by L25vs40vs50 (L40, L50)
## Z = -5.8462, p-value = 5.031e-09
## alternative hypothesis: true mu is not equal to 0
#lib
library("ggplot2")
#for ggplot facet use pile up the data to sequatial one
nm<-names(L25vs40vs50)
nn<-length(L25vs40vs50[,1])
l25<-subset(L25vs40vs50,select=L25vs40vs50) #factor
ROV<-subset(L25vs40vs50,select=ROV) #x of lm
DD<-NULL #pile up data
for(i in 2:(length(L25vs40vs50)-1)){
dd<-L25vs40vs50[,i] #data
dn<-rep(nm[i],nn) #name as group
dc<-cbind(l25,dd,dn,ROV) #fator,y,group,x
DD<-rbind(DD,dc)
}
DD.dose<-DD[1:(75*4),] # D98, D95, D50, D02
DD.time<-DD[(75*4+1):(75*7),] #V40,Time,MU
DD.dosetime<-rbind(DD.dose,DD.time)
#plot
g<-ggplot(DD.dose,aes(x=ROV,y=dd))
g<- g+ geom_point(aes(shape=factor(L25vs40vs50),col=factor(L25vs40vs50)),size=1)
g<- g+ facet_grid(.~dn)
g<-g+geom_smooth(method="lm",aes(color=factor(L25vs40vs50)),cex=1 )
g<-g+theme(text=element_text(size=15))
g<-g+ylab("Dose")
g<-g+ggtitle("Dose distribution vs. ROV")
g<-g+theme(axis.title=element_text(size=7),axis.text=element_text(size=5))
g<-g + theme(legend.title = element_text(size=7),legend.text = element_text(size=5))
g
with(L25vs40vs50,(anova(lm(D98~ROV*L25vs40vs50))))
## Analysis of Variance Table
##
## Response: D98
## Df Sum Sq Mean Sq F value Pr(>F)
## ROV 1 26.056 26.0559 12.9940 0.0005858 ***
## L25vs40vs50 2 0.920 0.4599 0.2294 0.7956513
## ROV:L25vs40vs50 2 0.836 0.4179 0.2084 0.8123922
## Residuals 69 138.361 2.0052
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
with(L25vs40vs50,anova(lm(D95~ROV*L25vs40vs50)))
## Analysis of Variance Table
##
## Response: D95
## Df Sum Sq Mean Sq F value Pr(>F)
## ROV 1 7.116 7.1158 8.8992 0.003942 **
## L25vs40vs50 2 2.292 1.1458 1.4329 0.245620
## ROV:L25vs40vs50 2 0.475 0.2375 0.2970 0.743968
## Residuals 69 55.172 0.7996
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
with(L25vs40vs50,anova(lm(D50~ROV*L25vs40vs50)))
## Analysis of Variance Table
##
## Response: D50
## Df Sum Sq Mean Sq F value Pr(>F)
## ROV 1 0.9333 0.93334 2.6344 0.109134
## L25vs40vs50 2 4.7803 2.39015 6.7463 0.002109 **
## ROV:L25vs40vs50 2 0.6996 0.34981 0.9873 0.377768
## Residuals 69 24.4461 0.35429
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
with(L25vs40vs50,anova(lm(D02~ROV*L25vs40vs50)))
## Analysis of Variance Table
##
## Response: D02
## Df Sum Sq Mean Sq F value Pr(>F)
## ROV 1 0.501 0.501 1.0856 0.3011
## L25vs40vs50 2 77.772 38.886 84.2750 <2e-16 ***
## ROV:L25vs40vs50 2 0.347 0.173 0.3755 0.6883
## Residuals 69 31.838 0.461
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
g<-ggplot(DD.time,aes(x=ROV,y=dd))
g<- g+ geom_point(aes(shape=factor(L25vs40vs50),col=factor(L25vs40vs50)),size=1)
g<- g+ facet_wrap(~dn,scales = "free")
g<-g+geom_smooth(method="lm",aes(color=factor(L25vs40vs50)),cex=1 )
g<-g+theme(text=element_text(size=15))
g<-g+ylab("Rate/Sec/Unit")
g<-g+ggtitle("V40, Time and MU vs. ROV")
g<-g+theme(axis.title=element_text(size=7),axis.text=element_text(size=5))
g<-g + theme(legend.title = element_text(size=7),legend.text = element_text(size=5))
g
with(L25vs40vs50,anova(lm(V40~ROV*L25vs40vs50)))
## Analysis of Variance Table
##
## Response: V40
## Df Sum Sq Mean Sq F value Pr(>F)
## ROV 1 0.0017671 0.00176705 17.4560 8.466e-05 ***
## L25vs40vs50 2 0.0005547 0.00027733 2.7397 0.07162 .
## ROV:L25vs40vs50 2 0.0000881 0.00004407 0.4353 0.64881
## Residuals 69 0.0069848 0.00010123
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
with(L25vs40vs50,anova(lm(Time~ROV*L25vs40vs50)))
## Analysis of Variance Table
##
## Response: Time
## Df Sum Sq Mean Sq F value Pr(>F)
## ROV 1 6010 6009.5 16.5323 0.0001250 ***
## L25vs40vs50 2 60460 30230.0 83.1633 < 2.2e-16 ***
## ROV:L25vs40vs50 2 6239 3119.5 8.5818 0.0004695 ***
## Residuals 69 25082 363.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
with(L25vs40vs50,anova(lm(MU~ROV*L25vs40vs50)))
## Analysis of Variance Table
##
## Response: MU
## Df Sum Sq Mean Sq F value Pr(>F)
## ROV 1 290572 290572 16.2207 0.0001428 ***
## L25vs40vs50 2 121939 60969 3.4035 0.0389335 *
## ROV:L25vs40vs50 2 73938 36969 2.0637 0.1347454
## Residuals 69 1236046 17914
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Only those mean values of D02 and Time were significantly different by k-test. Order along the leaf width about D02 (L50 = L25 < L40) and Time (L25 < L40 < L50) were significant. D98, Time and MU depended on ROV. Intercepts grouped by L25, L40 and L50 were very similar except D02 and Time.
L25, L40 and L50 plans were very similar from the dosimetric point of view (except D02) and from the volumetric (V40) point of view. In terms of dose delivery, Time had remarkable differences (L25 < L40 < L50) and large dependency on ROV.
DATA
L25vs40vs50,D98,D95,D50,D02,V40,Time,MU,ROV,PTV,Prostate,SV,No
L25,75.22,76.98,80.84,83.98,0.2,81,655,2.54,82.14,21.45,10.44,1
L40,74.72,76.6,81.21,85.22,0.21,96,642.2,2.54,82.14,21.45,10.44,1
L50,74.35,76.14,79.98,83.21,0.2,151,754.3,2.54,82.14,21.45,10.44,1
L25,75.34,76.57,80.83,84.99,0.2,84,666,3.04,117.56,38.37,7.24,2
L40,74.26,75.94,82.4,88.89,0.2,105,1038.4,3.04,117.56,38.37,7.24,2
L50,75.67,77.54,81.27,84.12,0.19,157,786.2,3.04,117.56,38.37,7.24,2
L25,76.68,78.07,81.26,84.6,0.2,77,495,2.05,121.65,33.19,10.41,3
L40,76.24,77.55,81.41,86.16,0.19,89,517.2,2.05,121.65,33.19,10.41,3
L50,76.87,78.05,82.04,83.81,0.18,97,452.3,2.05,121.65,33.19,10.41,3
L25,76.83,78.12,80.79,83.76,0.21,88,728,3.45,119.56,24.18,19.07,4
L40,75.26,76.76,81.03,85.06,0.21,102,819.6,3.45,119.56,24.18,19.07,4
L50,75.84,77.3,81.2,83.66,0.21,180,898.2,3.45,119.56,24.18,19.07,4
L25,75.01,77.69,81.77,84.38,0.21,88,686,5.45,128.37,28.91,16.35,5
L40,74.82,76.82,81.19,86.59,0.21,101,767.6,5.45,128.37,28.91,16.35,5
L50,74.54,76.52,80.49,83.09,0.2,204,1020.3,5.45,128.37,28.91,16.35,5
L25,77.03,78.28,81.72,84.77,0.18,81,599,3.74,91.82,25.98,0,6
L40,77.34,78.55,82.26,85.41,0.19,92,523.4,3.74,91.82,25.98,0,6
L50,76.99,78.31,81.89,83.82,0.19,124,587.7,3.74,91.82,25.98,0,6
L25,76.69,77.74,80.89,83.99,0.2,79,553,8.99,145.03,21.82,36.64,7
L40,76.32,77.84,81.14,84.74,0.2,90,511.1,8.99,145.03,21.82,36.64,7
L50,77.1,78.26,82.03,83.82,0.19,119,527.2,8.99,145.03,21.82,36.64,7
L25,77.11,78.23,81.74,83.97,0.19,79,528,3.64,197.91,70.14,28.86,8
L40,77.73,78.6,82.42,86.11,0.2,85,530.2,3.64,197.91,70.14,28.86,8
L50,77.16,78.38,82.08,84.01,0.19,111,524.9,3.64,197.91,70.14,28.86,8
L25,77.23,78.31,80.54,83.67,0.21,80,620,0.03,84.32,23.74,21.43,9
L40,77.46,76.71,81.08,85.1,0.2,90,616,0.03,84.32,23.74,21.43,9
L50,77.68,78.51,81.77,83.56,0.2,127,635.1,0.03,84.32,23.74,21.43,9
L25,75.9,77.6,81.67,84.89,0.19,86,705,4.74,199.32,81.02,6.94,10
L40,76.92,78.32,82.14,85.58,0.21,94,585.2,4.74,199.32,81.02,6.94,10
L50,77.62,78.84,82.04,84.04,0.2,124,621.1,4.74,199.32,81.02,6.94,10
L25,75.79,77.28,81.23,83.96,0.21,84,642,5.23,109.79,20.24,7.48,11
L40,75.14,76.44,81.05,86.12,0.21,92,592.3,5.23,109.79,20.24,7.48,11
L50,75.18,76.66,80.87,83.74,0.2,147,735,5.23,109.79,20.24,7.48,11
L25,74.84,77.32,80.96,83.44,0.2,78,611,1.79,92.99,17.77,5.77,12
L40,74.38,76.48,81.39,86.94,0.19,97,575.9,1.79,92.99,17.77,5.77,12
L50,74.22,77.03,80.86,83.58,0.18,133,665.3,1.79,92.99,17.77,5.77,12
L25,75.16,77.06,81.01,84.56,0.21,85,660,5.24,189.41,56.5,28.1,13
L40,74,75.7,80.93,85.79,0.21,94,639.3,5.24,189.41,56.5,28.1,13
L50,74.9,76.51,80.37,83.49,0.2,185,925,5.24,189.41,56.5,28.1,13
L25,76.95,77.83,81.12,84.36,0.2,79,563,2.22,64.85,15.14,7.25,14
L40,77.09,78.11,81.78,85.62,0.19,95,582.7,2.22,64.85,15.14,7.25,14
L50,77.16,78.17,81.44,83.91,0.19,111,552.6,2.22,64.85,15.14,7.25,14
L25,73.5,77.2,81.58,84.14,0.22,95,862,9.39,105.09,14.5,12.36,15
L40,72.66,75.66,81.09,86.73,0.22,114,881.2,9.39,105.09,14.5,12.36,15
L50,70.49,74.87,79.65,83.49,0.21,229,1146.2,9.39,105.09,14.5,12.36,15
L25,73.69,75.68,81.05,85.23,0.22,83,767,5.21,110.79,22.95,22.1,16
L40,73.94,76.81,81.36,86.26,0.22,104,799.6,5.21,110.79,22.95,22.1,16
L50,72.6,76.21,80.32,84.28,0.21,224,1118.6,5.21,110.79,22.95,22.1,16
L25,75.84,77.88,81.9,84.71,0.19,78,604,2.48,115.6,30.55,11.55,17
L40,75.7,77.32,81.29,86.27,0.2,90,543.2,2.48,115.6,30.55,11.55,17
L50,75.51,77.47,80.69,83.91,0.2,111,537.1,2.48,115.6,30.55,11.55,17
L25,73.86,76.69,81.77,84.35,0.22,91,802,7.46,133.49,26.98,10.91,18
L40,72.44,74.81,80.99,86.96,0.22,103,867.5,7.46,133.49,26.98,10.91,18
L50,73.47,76.04,80.48,84.91,0.21,203,1012.7,7.46,133.49,26.98,10.91,18
L25,76.39,77.89,81.32,83.79,0.21,87,691,4.84,98.99,12.66,14.09,19
L40,74.84,76.26,81.48,87.6,0.21,95,678.9,4.84,98.99,12.66,14.09,19
L50,74.64,76.35,80.34,83.87,0.2,170,851.9,4.84,98.99,12.66,14.09,19
L25,73.82,75.55,79.57,84.05,0.19,84,703,6.51,168.3,29.04,24.33,20
L40,75.85,77,81.79,87.24,0.21,91,650.3,6.51,168.3,29.04,24.33,20
L50,75.26,76.85,80.54,83.97,0.2,185,927,6.51,168.3,29.04,24.33,20
L25,77.03,77.96,81.53,83.95,0.2,76,554,4.84,79.87,17.27,6.86,21
L40,77.68,78.06,82.25,86.6,0.2,92,539.7,4.84,79.87,17.27,6.86,21
L50,75.84,76.99,80.09,83.17,0.19,113,561.2,4.84,79.87,17.27,6.86,21
L25,77.82,78.78,82.22,83.78,0.19,81,586,4.49,114.02,28.19,14.64,22
L40,77.57,78.51,81.62,85.63,0.18,95,515.9,4.49,114.02,28.19,14.64,22
L50,77.65,78.42,81.27,84.43,0.17,126,627.8,4.49,114.02,28.19,14.64,22
L25,76.05,77.66,81.14,83.67,0.2,82,647,3.69,159.26,42.35,17.81,23
L40,76.33,77.61,81.74,85.54,0.2,92,617.9,3.69,159.26,42.35,17.81,23
L50,75.49,77.04,80.89,83.81,0.2,135,675.8,3.69,159.26,42.35,17.81,23
L25,76.09,78.07,81.4,84.61,0.2,79,591,3.39,78.08,14.33,5.41,24
L40,77,78.39,82.45,87.1,0.19,95,649.7,3.39,78.08,14.33,5.41,24
L50,77.21,77.76,80.16,83.43,0.2,132,653.9,3.39,78.08,14.33,5.41,24
L25,75.05,77.78,81.77,83.95,0.17,83,617,0.86,124.26,41.83,2.71,25
L40,74.68,76.84,81.91,84.64,0.19,92,576,0.86,124.26,41.83,2.71,25
L50,74.85,77.07,81.18,84.49,0.19,109,536.2,0.86,124.26,41.83,2.71,25