This is an example of running an R version of Google Datalab
Google Datalab is a service that lets you easily interact with your data in the Google Cloud. This document is an excercise in trying to replicate the same functionality:
googleComputeEngineR within its own Docker containertensorflow helper library tflearnlibrary(googleAuthR)
## this reuses the authentication of the GCE instance we are on
gar_gce_auth()
library(bigQueryR)
## list authenticated projects
myproject <- bqr_list_projects()
library(googleCloudStorageR)
## Setting scopes to https://www.googleapis.com/auth/devstorage.full_control
## If you need additional scopes set do so via options(googleAuthR.scopes.selected = c('scope1', 'scope2')) before loading library and include one required scope.
## list Cloud Storage buckets
gcs_list_buckets(myproject$id[[1]])
## name storageClass location
## 1 artifacts.mark-edmondson-gde.appspot.com STANDARD US
## 2 mark-edmondson-gde-minecraft-backup STANDARD US
## 3 mark-edmondson-public-files STANDARD EU
## updated
## 1 2016-10-07 11:37:55
## 2 2015-11-10 09:28:38
## 3 2016-08-27 20:47:23
Demo of running python in same document:
hiss = 'sssssssss'
print "Pythons go %s." % hiss
## Pythons go sssssssss.
Also works with SQL and bash
pip freeze
## Cython==0.25.1
## Pillow==3.4.2
## argparse==1.2.1
## cffi==0.8.6
## chardet==2.3.0
## colorama==0.3.2
## cryptography==0.6.1
## feather-format==0.3.1
## funcsigs==1.0.2
## h5py==2.6.0
## html5lib==0.999
## mock==2.0.0
## ndg-httpsclient==0.3.2
## numpy==1.11.2
## pandas==0.19.1
## pbr==1.10.0
## ply==3.4
## protobuf==3.0.0
## pyOpenSSL==0.14
## pyasn1==0.1.7
## pycparser==2.10
## python-dateutil==2.6.0
## pytz==2016.7
## requests==2.4.3
## six==1.10.0
## tensorflow==0.11.0
## tflearn==0.2.2
## urllib3==1.9.1
## wheel==0.29.0
## wsgiref==0.1.2
From the example intro blogpost for feather:
library(feather)
df <- mtcars
path <- "my_data.feather"
write_feather(df, path)
import feather
path = 'my_data.feather'
df = feather.read_dataframe(path)
df.head
from __future__ import print_function
import tensorflow as tf
# Simple hello world using TensorFlow
# Create a Constant op
# The op is added as a node to the default graph.
#
# The value returned by the constructor represents the output
# of the Constant op.
hello = tf.constant('Hello, TensorFlow!')
# Start tf session
sess = tf.Session()
# Run the op
print(sess.run(hello))
## Hello, TensorFlow!
library(tensorflow)
sess = tf$Session()
hello <- tf$constant('Hello, TensorFlow!')
sess$run(hello)
## [1] "Hello, TensorFlow!"
from __future__ import print_function
import numpy as np
import tflearn
# Download the Titanic dataset
from tflearn.datasets import titanic
titanic.download_dataset('titanic_dataset.csv')
# Load CSV file, indicate that the first column represents labels
from tflearn.data_utils import load_csv
data, labels = load_csv('titanic_dataset.csv', target_column=0,
categorical_labels=True, n_classes=2)
# Preprocessing function
def preprocess(data, columns_to_ignore):
# Sort by descending id and delete columns
for id in sorted(columns_to_ignore, reverse=True):
[r.pop(id) for r in data]
for i in range(len(data)):
# Converting 'sex' field to float (id is 1 after removing labels column)
data[i][1] = 1. if data[i][1] == 'female' else 0.
return np.array(data, dtype=np.float32)
# Ignore 'name' and 'ticket' columns (id 1 & 6 of data array)
to_ignore=[1, 6]
# Preprocess data
data = preprocess(data, to_ignore)
# Build neural network
net = tflearn.input_data(shape=[None, 6])
net = tflearn.fully_connected(net, 32)
net = tflearn.fully_connected(net, 32)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net)
# Define model
model = tflearn.DNN(net)
# Start training (apply gradient descent algorithm)
model.fit(data, labels, n_epoch=10, batch_size=16, show_metric=True)
# Let's create some data for DiCaprio and Winslet
dicaprio = [3, 'Jack Dawson', 'male', 19, 0, 0, 'N/A', 5.0000]
winslet = [1, 'Rose DeWitt Bukater', 'female', 17, 1, 2, 'N/A', 100.0000]
# Preprocess data
dicaprio, winslet = preprocess([dicaprio, winslet], to_ignore)
# Predict surviving chances (class 1 results)
pred = model.predict([dicaprio, winslet])
print("DiCaprio Surviving Rate:", pred[0][1])
print("Winslet Surviving Rate:", pred[1][1])
From the tflearn quickstart modified to use R for data preprocessing:
import tflearn
# Download the Titanic dataset to local file 'titanic_dataset.csv'
from tflearn.datasets import titanic
titanic.download_dataset('titanic_dataset.csv')
## Scipy not supported!
Use R to process data:
library(dplyr)
titanic <- read.csv('titanic_dataset.csv')
processed <- titanic %>%
select(-name, -ticket) %>%
mutate(sex = as.numeric(as.factor(sex)) - 1)
str(processed)
## 'data.frame': 1309 obs. of 7 variables:
## $ survived: int 1 1 0 0 0 1 1 0 1 0 ...
## $ pclass : int 1 1 1 1 1 1 1 1 1 1 ...
## $ sex : num 0 1 0 1 0 1 0 1 0 1 ...
## $ age : num 29 0.917 2 30 25 ...
## $ sibsp : int 0 1 1 1 1 0 1 0 2 0 ...
## $ parch : int 0 2 2 2 2 0 0 0 0 0 ...
## $ fare : num 211 152 152 152 152 ...
write.table(processed, "processed.csv",sep = ",", quote = FALSE, row.names = FALSE)
Back to Python to run model:
from __future__ import print_function
import numpy as np
import tflearn
# Load processed CSV file, indicate that the first column represents labels
from tflearn.data_utils import load_csv
data, labels = load_csv('processed.csv', target_column=0,
categorical_labels=True, n_classes=2)
data = np.array(data, dtype=np.float32)
# Build neural network
net = tflearn.input_data(shape=[None, 6])
net = tflearn.fully_connected(net, 32)
net = tflearn.fully_connected(net, 32)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net)
# Define model
model = tflearn.DNN(net)
# Start training (apply gradient descent algorithm)
model.fit(data, labels, n_epoch=10, batch_size=16)
# Let's create some data for DiCaprio and Winslet
dicaprio = [3, 1, 19, 0, 0, 5.0000]
winslet = [1, 0, 17, 1, 2, 100.0000]
# Predict surviving chances (class 1 results)
pred = model.predict([dicaprio, winslet])
print("DiCaprio Surviving Rate:", pred[0][1])
print("Winslet Surviving Rate:", pred[1][1])
## Scipy not supported!
## ---------------------------------
## Run id: U527AR
## Log directory: /tmp/tflearn_logs/
## ---------------------------------
## Training samples: 1309
## Validation samples: 0
## --
## Training Step: 1
## [2K
| Adam | epoch: 001 | loss: 0.00000 -- iter: 0016/1309
## [A[ATraining Step: 2 | total loss: [1m[32m0.62355[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.62355 -- iter: 0032/1309
## [A[ATraining Step: 3 | total loss: [1m[32m0.68624[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68624 -- iter: 0048/1309
## [A[ATraining Step: 4 | total loss: [1m[32m0.68828[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68828 -- iter: 0064/1309
## [A[ATraining Step: 5 | total loss: [1m[32m0.68793[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68793 -- iter: 0080/1309
## [A[ATraining Step: 6 | total loss: [1m[32m0.69098[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.69098 -- iter: 0096/1309
## [A[ATraining Step: 7 | total loss: [1m[32m0.69084[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.69084 -- iter: 0112/1309
## [A[ATraining Step: 8 | total loss: [1m[32m0.69009[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.69009 -- iter: 0128/1309
## [A[ATraining Step: 9 | total loss: [1m[32m0.68775[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68775 -- iter: 0144/1309
## [A[ATraining Step: 10 | total loss: [1m[32m0.68380[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68380 -- iter: 0160/1309
## [A[ATraining Step: 11 | total loss: [1m[32m0.68446[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68446 -- iter: 0176/1309
## [A[ATraining Step: 12 | total loss: [1m[32m0.67775[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67775 -- iter: 0192/1309
## [A[ATraining Step: 13 | total loss: [1m[32m0.68567[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68567 -- iter: 0208/1309
## [A[ATraining Step: 14 | total loss: [1m[32m0.67682[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67682 -- iter: 0224/1309
## [A[ATraining Step: 15 | total loss: [1m[32m0.67355[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67355 -- iter: 0240/1309
## [A[ATraining Step: 16 | total loss: [1m[32m0.68062[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68062 -- iter: 0256/1309
## [A[ATraining Step: 17 | total loss: [1m[32m0.67059[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67059 -- iter: 0272/1309
## [A[ATraining Step: 18 | total loss: [1m[32m0.66260[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66260 -- iter: 0288/1309
## [A[ATraining Step: 19 | total loss: [1m[32m0.66117[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66117 -- iter: 0304/1309
## [A[ATraining Step: 20 | total loss: [1m[32m0.66160[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66160 -- iter: 0320/1309
## [A[ATraining Step: 21 | total loss: [1m[32m0.65622[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65622 -- iter: 0336/1309
## [A[ATraining Step: 22 | total loss: [1m[32m0.66092[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66092 -- iter: 0352/1309
## [A[ATraining Step: 23 | total loss: [1m[32m0.64904[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64904 -- iter: 0368/1309
## [A[ATraining Step: 24 | total loss: [1m[32m0.65021[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65021 -- iter: 0384/1309
## [A[ATraining Step: 25 | total loss: [1m[32m0.64501[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64501 -- iter: 0400/1309
## [A[ATraining Step: 26 | total loss: [1m[32m0.68222[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68222 -- iter: 0416/1309
## [A[ATraining Step: 27 | total loss: [1m[32m0.68186[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68186 -- iter: 0432/1309
## [A[ATraining Step: 28 | total loss: [1m[32m0.66725[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66725 -- iter: 0448/1309
## [A[ATraining Step: 29 | total loss: [1m[32m0.66035[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66035 -- iter: 0464/1309
## [A[ATraining Step: 30 | total loss: [1m[32m0.66366[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66366 -- iter: 0480/1309
## [A[ATraining Step: 31 | total loss: [1m[32m0.66252[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66252 -- iter: 0496/1309
## [A[ATraining Step: 32 | total loss: [1m[32m0.65841[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65841 -- iter: 0512/1309
## [A[ATraining Step: 33 | total loss: [1m[32m0.63773[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.63773 -- iter: 0528/1309
## [A[ATraining Step: 34 | total loss: [1m[32m0.64177[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64177 -- iter: 0544/1309
## [A[ATraining Step: 35 | total loss: [1m[32m0.66026[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66026 -- iter: 0560/1309
## [A[ATraining Step: 36 | total loss: [1m[32m0.69326[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.69326 -- iter: 0576/1309
## [A[ATraining Step: 37 | total loss: [1m[32m0.66589[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66589 -- iter: 0592/1309
## [A[ATraining Step: 38 | total loss: [1m[32m0.64924[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64924 -- iter: 0608/1309
## [A[ATraining Step: 39 | total loss: [1m[32m0.64548[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64548 -- iter: 0624/1309
## [A[ATraining Step: 40 | total loss: [1m[32m0.63763[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.63763 -- iter: 0640/1309
## [A[ATraining Step: 41 | total loss: [1m[32m0.67934[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67934 -- iter: 0656/1309
## [A[ATraining Step: 42 | total loss: [1m[32m0.72584[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.72584 -- iter: 0672/1309
## [A[ATraining Step: 43 | total loss: [1m[32m0.70782[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.70782 -- iter: 0688/1309
## [A[ATraining Step: 44 | total loss: [1m[32m0.70890[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.70890 -- iter: 0704/1309
## [A[ATraining Step: 45 | total loss: [1m[32m0.69403[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.69403 -- iter: 0720/1309
## [A[ATraining Step: 46 | total loss: [1m[32m0.69799[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.69799 -- iter: 0736/1309
## [A[ATraining Step: 47 | total loss: [1m[32m0.69056[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.69056 -- iter: 0752/1309
## [A[ATraining Step: 48 | total loss: [1m[32m0.68293[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.68293 -- iter: 0768/1309
## [A[ATraining Step: 49 | total loss: [1m[32m0.67184[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67184 -- iter: 0784/1309
## [A[ATraining Step: 50 | total loss: [1m[32m0.67261[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67261 -- iter: 0800/1309
## [A[ATraining Step: 51 | total loss: [1m[32m0.67288[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67288 -- iter: 0816/1309
## [A[ATraining Step: 52 | total loss: [1m[32m0.66129[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66129 -- iter: 0832/1309
## [A[ATraining Step: 53 | total loss: [1m[32m0.65795[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65795 -- iter: 0848/1309
## [A[ATraining Step: 54 | total loss: [1m[32m0.63502[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.63502 -- iter: 0864/1309
## [A[ATraining Step: 55 | total loss: [1m[32m0.64543[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64543 -- iter: 0880/1309
## [A[ATraining Step: 56 | total loss: [1m[32m0.64112[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64112 -- iter: 0896/1309
## [A[ATraining Step: 57 | total loss: [1m[32m0.64085[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64085 -- iter: 0912/1309
## [A[ATraining Step: 58 | total loss: [1m[32m0.64628[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64628 -- iter: 0928/1309
## [A[ATraining Step: 59 | total loss: [1m[32m0.65419[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65419 -- iter: 0944/1309
## [A[ATraining Step: 60 | total loss: [1m[32m0.65015[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65015 -- iter: 0960/1309
## [A[ATraining Step: 61 | total loss: [1m[32m0.65702[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65702 -- iter: 0976/1309
## [A[ATraining Step: 62 | total loss: [1m[32m0.65542[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65542 -- iter: 0992/1309
## [A[ATraining Step: 63 | total loss: [1m[32m0.67665[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67665 -- iter: 1008/1309
## [A[ATraining Step: 64 | total loss: [1m[32m0.66618[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66618 -- iter: 1024/1309
## [A[ATraining Step: 65 | total loss: [1m[32m0.65384[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65384 -- iter: 1040/1309
## [A[ATraining Step: 66 | total loss: [1m[32m0.65121[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65121 -- iter: 1056/1309
## [A[ATraining Step: 67 | total loss: [1m[32m0.65850[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65850 -- iter: 1072/1309
## [A[ATraining Step: 68 | total loss: [1m[32m0.65625[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65625 -- iter: 1088/1309
## [A[ATraining Step: 69 | total loss: [1m[32m0.64502[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.64502 -- iter: 1104/1309
## [A[ATraining Step: 70 | total loss: [1m[32m0.65894[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65894 -- iter: 1120/1309
## [A[ATraining Step: 71 | total loss: [1m[32m0.65847[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65847 -- iter: 1136/1309
## [A[ATraining Step: 72 | total loss: [1m[32m0.67057[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67057 -- iter: 1152/1309
## [A[ATraining Step: 73 | total loss: [1m[32m0.66633[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66633 -- iter: 1168/1309
## [A[ATraining Step: 74 | total loss: [1m[32m0.67553[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.67553 -- iter: 1184/1309
## [A[ATraining Step: 75 | total loss: [1m[32m0.66182[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66182 -- iter: 1200/1309
## [A[ATraining Step: 76 | total loss: [1m[32m0.65571[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65571 -- iter: 1216/1309
## [A[ATraining Step: 77 | total loss: [1m[32m0.66136[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.66136 -- iter: 1232/1309
## [A[ATraining Step: 78 | total loss: [1m[32m0.65617[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65617 -- iter: 1248/1309
## [A[ATraining Step: 79 | total loss: [1m[32m0.65106[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65106 -- iter: 1264/1309
## [A[ATraining Step: 80 | total loss: [1m[32m0.65181[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65181 -- iter: 1280/1309
## [A[ATraining Step: 81 | total loss: [1m[32m0.65076[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.65076 -- iter: 1296/1309
## [A[ATraining Step: 82 | total loss: [1m[32m0.63598[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.63598 -- iter: 1309/1309
## [A[ATraining Step: 82 | total loss: [1m[32m0.63598[0m[0m
## [2K
| Adam | epoch: 001 | loss: 0.63598 -- iter: 1309/1309
## --
## Training Step: 83 | total loss: [1m[32m0.62936[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62936 -- iter: 0016/1309
## [A[ATraining Step: 84 | total loss: [1m[32m0.62307[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62307 -- iter: 0032/1309
## [A[ATraining Step: 85 | total loss: [1m[32m0.62194[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62194 -- iter: 0048/1309
## [A[ATraining Step: 86 | total loss: [1m[32m0.62587[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62587 -- iter: 0064/1309
## [A[ATraining Step: 87 | total loss: [1m[32m0.61556[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61556 -- iter: 0080/1309
## [A[ATraining Step: 88 | total loss: [1m[32m0.62776[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62776 -- iter: 0096/1309
## [A[ATraining Step: 89 | total loss: [1m[32m0.62942[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62942 -- iter: 0112/1309
## [A[ATraining Step: 90 | total loss: [1m[32m0.62614[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62614 -- iter: 0128/1309
## [A[ATraining Step: 91 | total loss: [1m[32m0.61422[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61422 -- iter: 0144/1309
## [A[ATraining Step: 92 | total loss: [1m[32m0.61096[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61096 -- iter: 0160/1309
## [A[ATraining Step: 93 | total loss: [1m[32m0.60008[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.60008 -- iter: 0176/1309
## [A[ATraining Step: 94 | total loss: [1m[32m0.58198[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.58198 -- iter: 0192/1309
## [A[ATraining Step: 95 | total loss: [1m[32m0.58318[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.58318 -- iter: 0208/1309
## [A[ATraining Step: 96 | total loss: [1m[32m0.59722[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.59722 -- iter: 0224/1309
## [A[ATraining Step: 97 | total loss: [1m[32m0.60388[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.60388 -- iter: 0240/1309
## [A[ATraining Step: 98 | total loss: [1m[32m0.60225[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.60225 -- iter: 0256/1309
## [A[ATraining Step: 99 | total loss: [1m[32m0.60550[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.60550 -- iter: 0272/1309
## [A[ATraining Step: 100 | total loss: [1m[32m0.60809[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.60809 -- iter: 0288/1309
## [A[ATraining Step: 101 | total loss: [1m[32m0.60451[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.60451 -- iter: 0304/1309
## [A[ATraining Step: 102 | total loss: [1m[32m0.60749[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.60749 -- iter: 0320/1309
## [A[ATraining Step: 103 | total loss: [1m[32m0.60584[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.60584 -- iter: 0336/1309
## [A[ATraining Step: 104 | total loss: [1m[32m0.61162[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61162 -- iter: 0352/1309
## [A[ATraining Step: 105 | total loss: [1m[32m0.62416[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62416 -- iter: 0368/1309
## [A[ATraining Step: 106 | total loss: [1m[32m0.61926[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61926 -- iter: 0384/1309
## [A[ATraining Step: 107 | total loss: [1m[32m0.63219[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63219 -- iter: 0400/1309
## [A[ATraining Step: 108 | total loss: [1m[32m0.62841[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62841 -- iter: 0416/1309
## [A[ATraining Step: 109 | total loss: [1m[32m0.63076[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63076 -- iter: 0432/1309
## [A[ATraining Step: 110 | total loss: [1m[32m0.61710[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61710 -- iter: 0448/1309
## [A[ATraining Step: 111 | total loss: [1m[32m0.62523[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62523 -- iter: 0464/1309
## [A[ATraining Step: 112 | total loss: [1m[32m0.62778[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62778 -- iter: 0480/1309
## [A[ATraining Step: 113 | total loss: [1m[32m0.62497[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62497 -- iter: 0496/1309
## [A[ATraining Step: 114 | total loss: [1m[32m0.63505[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63505 -- iter: 0512/1309
## [A[ATraining Step: 115 | total loss: [1m[32m0.63498[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63498 -- iter: 0528/1309
## [A[ATraining Step: 116 | total loss: [1m[32m0.62581[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62581 -- iter: 0544/1309
## [A[ATraining Step: 117 | total loss: [1m[32m0.63704[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63704 -- iter: 0560/1309
## [A[ATraining Step: 118 | total loss: [1m[32m0.64470[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64470 -- iter: 0576/1309
## [A[ATraining Step: 119 | total loss: [1m[32m0.64199[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64199 -- iter: 0592/1309
## [A[ATraining Step: 120 | total loss: [1m[32m0.63240[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63240 -- iter: 0608/1309
## [A[ATraining Step: 121 | total loss: [1m[32m0.63733[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63733 -- iter: 0624/1309
## [A[ATraining Step: 122 | total loss: [1m[32m0.61953[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61953 -- iter: 0640/1309
## [A[ATraining Step: 123 | total loss: [1m[32m0.61439[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61439 -- iter: 0656/1309
## [A[ATraining Step: 124 | total loss: [1m[32m0.62697[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62697 -- iter: 0672/1309
## [A[ATraining Step: 125 | total loss: [1m[32m0.63609[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63609 -- iter: 0688/1309
## [A[ATraining Step: 126 | total loss: [1m[32m0.63995[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63995 -- iter: 0704/1309
## [A[ATraining Step: 127 | total loss: [1m[32m0.62673[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62673 -- iter: 0720/1309
## [A[ATraining Step: 128 | total loss: [1m[32m0.62341[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62341 -- iter: 0736/1309
## [A[ATraining Step: 129 | total loss: [1m[32m0.65158[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.65158 -- iter: 0752/1309
## [A[ATraining Step: 130 | total loss: [1m[32m0.63829[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63829 -- iter: 0768/1309
## [A[ATraining Step: 131 | total loss: [1m[32m0.64077[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64077 -- iter: 0784/1309
## [A[ATraining Step: 132 | total loss: [1m[32m0.62772[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62772 -- iter: 0800/1309
## [A[ATraining Step: 133 | total loss: [1m[32m0.62579[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62579 -- iter: 0816/1309
## [A[ATraining Step: 134 | total loss: [1m[32m0.63264[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63264 -- iter: 0832/1309
## [A[ATraining Step: 135 | total loss: [1m[32m0.63261[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63261 -- iter: 0848/1309
## [A[ATraining Step: 136 | total loss: [1m[32m0.62780[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62780 -- iter: 0864/1309
## [A[ATraining Step: 137 | total loss: [1m[32m0.62992[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62992 -- iter: 0880/1309
## [A[ATraining Step: 138 | total loss: [1m[32m0.63048[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63048 -- iter: 0896/1309
## [A[ATraining Step: 139 | total loss: [1m[32m0.62436[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62436 -- iter: 0912/1309
## [A[ATraining Step: 140 | total loss: [1m[32m0.62723[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62723 -- iter: 0928/1309
## [A[ATraining Step: 141 | total loss: [1m[32m0.61685[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.61685 -- iter: 0944/1309
## [A[ATraining Step: 142 | total loss: [1m[32m0.62022[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62022 -- iter: 0960/1309
## [A[ATraining Step: 143 | total loss: [1m[32m0.63215[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63215 -- iter: 0976/1309
## [A[ATraining Step: 144 | total loss: [1m[32m0.63188[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63188 -- iter: 0992/1309
## [A[ATraining Step: 145 | total loss: [1m[32m0.64376[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64376 -- iter: 1008/1309
## [A[ATraining Step: 146 | total loss: [1m[32m0.64600[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64600 -- iter: 1024/1309
## [A[ATraining Step: 147 | total loss: [1m[32m0.65707[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.65707 -- iter: 1040/1309
## [A[ATraining Step: 148 | total loss: [1m[32m0.65105[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.65105 -- iter: 1056/1309
## [A[ATraining Step: 149 | total loss: [1m[32m0.63970[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63970 -- iter: 1072/1309
## [A[ATraining Step: 150 | total loss: [1m[32m0.64384[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64384 -- iter: 1088/1309
## [A[ATraining Step: 151 | total loss: [1m[32m0.64504[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64504 -- iter: 1104/1309
## [A[ATraining Step: 152 | total loss: [1m[32m0.63971[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63971 -- iter: 1120/1309
## [A[ATraining Step: 153 | total loss: [1m[32m0.63259[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63259 -- iter: 1136/1309
## [A[ATraining Step: 154 | total loss: [1m[32m0.62744[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62744 -- iter: 1152/1309
## [A[ATraining Step: 155 | total loss: [1m[32m0.63816[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63816 -- iter: 1168/1309
## [A[ATraining Step: 156 | total loss: [1m[32m0.64241[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64241 -- iter: 1184/1309
## [A[ATraining Step: 157 | total loss: [1m[32m0.64073[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64073 -- iter: 1200/1309
## [A[ATraining Step: 158 | total loss: [1m[32m0.62911[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62911 -- iter: 1216/1309
## [A[ATraining Step: 159 | total loss: [1m[32m0.62586[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62586 -- iter: 1232/1309
## [A[ATraining Step: 160 | total loss: [1m[32m0.63055[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63055 -- iter: 1248/1309
## [A[ATraining Step: 161 | total loss: [1m[32m0.63030[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63030 -- iter: 1264/1309
## [A[ATraining Step: 162 | total loss: [1m[32m0.62806[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.62806 -- iter: 1280/1309
## [A[ATraining Step: 163 | total loss: [1m[32m0.63106[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.63106 -- iter: 1296/1309
## [A[ATraining Step: 164 | total loss: [1m[32m0.64570[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64570 -- iter: 1309/1309
## [A[ATraining Step: 164 | total loss: [1m[32m0.64570[0m[0m
## [2K
| Adam | epoch: 002 | loss: 0.64570 -- iter: 1309/1309
## --
## Training Step: 165 | total loss: [1m[32m0.64028[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.64028 -- iter: 0016/1309
## [A[ATraining Step: 166 | total loss: [1m[32m0.65350[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.65350 -- iter: 0032/1309
## [A[ATraining Step: 167 | total loss: [1m[32m0.66501[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.66501 -- iter: 0048/1309
## [A[ATraining Step: 168 | total loss: [1m[32m0.65905[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.65905 -- iter: 0064/1309
## [A[ATraining Step: 169 | total loss: [1m[32m0.65300[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.65300 -- iter: 0080/1309
## [A[ATraining Step: 170 | total loss: [1m[32m0.65155[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.65155 -- iter: 0096/1309
## [A[ATraining Step: 171 | total loss: [1m[32m0.64028[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.64028 -- iter: 0112/1309
## [A[ATraining Step: 172 | total loss: [1m[32m0.63399[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.63399 -- iter: 0128/1309
## [A[ATraining Step: 173 | total loss: [1m[32m0.62651[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.62651 -- iter: 0144/1309
## [A[ATraining Step: 174 | total loss: [1m[32m0.62327[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.62327 -- iter: 0160/1309
## [A[ATraining Step: 175 | total loss: [1m[32m0.62256[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.62256 -- iter: 0176/1309
## [A[ATraining Step: 176 | total loss: [1m[32m0.64239[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.64239 -- iter: 0192/1309
## [A[ATraining Step: 177 | total loss: [1m[32m0.64598[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.64598 -- iter: 0208/1309
## [A[ATraining Step: 178 | total loss: [1m[32m0.64351[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.64351 -- iter: 0224/1309
## [A[ATraining Step: 179 | total loss: [1m[32m0.64095[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.64095 -- iter: 0240/1309
## [A[ATraining Step: 180 | total loss: [1m[32m0.64561[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.64561 -- iter: 0256/1309
## [A[ATraining Step: 181 | total loss: [1m[32m0.63351[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.63351 -- iter: 0272/1309
## [A[ATraining Step: 182 | total loss: [1m[32m0.61889[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.61889 -- iter: 0288/1309
## [A[ATraining Step: 183 | total loss: [1m[32m0.60678[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60678 -- iter: 0304/1309
## [A[ATraining Step: 184 | total loss: [1m[32m0.60386[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60386 -- iter: 0320/1309
## [A[ATraining Step: 185 | total loss: [1m[32m0.61072[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.61072 -- iter: 0336/1309
## [A[ATraining Step: 186 | total loss: [1m[32m0.60743[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60743 -- iter: 0352/1309
## [A[ATraining Step: 187 | total loss: [1m[32m0.60585[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60585 -- iter: 0368/1309
## [A[ATraining Step: 188 | total loss: [1m[32m0.60800[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60800 -- iter: 0384/1309
## [A[ATraining Step: 189 | total loss: [1m[32m0.61400[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.61400 -- iter: 0400/1309
## [A[ATraining Step: 190 | total loss: [1m[32m0.60394[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60394 -- iter: 0416/1309
## [A[ATraining Step: 191 | total loss: [1m[32m0.59206[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59206 -- iter: 0432/1309
## [A[ATraining Step: 192 | total loss: [1m[32m0.59280[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59280 -- iter: 0448/1309
## [A[ATraining Step: 193 | total loss: [1m[32m0.59529[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59529 -- iter: 0464/1309
## [A[ATraining Step: 194 | total loss: [1m[32m0.59558[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59558 -- iter: 0480/1309
## [A[ATraining Step: 195 | total loss: [1m[32m0.59235[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59235 -- iter: 0496/1309
## [A[ATraining Step: 196 | total loss: [1m[32m0.58214[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58214 -- iter: 0512/1309
## [A[ATraining Step: 197 | total loss: [1m[32m0.56487[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.56487 -- iter: 0528/1309
## [A[ATraining Step: 198 | total loss: [1m[32m0.56536[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.56536 -- iter: 0544/1309
## [A[ATraining Step: 199 | total loss: [1m[32m0.55542[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.55542 -- iter: 0560/1309
## [A[ATraining Step: 200 | total loss: [1m[32m0.58240[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58240 -- iter: 0576/1309
## [A[ATraining Step: 201 | total loss: [1m[32m0.58034[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58034 -- iter: 0592/1309
## [A[ATraining Step: 202 | total loss: [1m[32m0.58814[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58814 -- iter: 0608/1309
## [A[ATraining Step: 203 | total loss: [1m[32m0.57290[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.57290 -- iter: 0624/1309
## [A[ATraining Step: 204 | total loss: [1m[32m0.58492[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58492 -- iter: 0640/1309
## [A[ATraining Step: 205 | total loss: [1m[32m0.59301[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59301 -- iter: 0656/1309
## [A[ATraining Step: 206 | total loss: [1m[32m0.58316[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58316 -- iter: 0672/1309
## [A[ATraining Step: 207 | total loss: [1m[32m0.59345[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59345 -- iter: 0688/1309
## [A[ATraining Step: 208 | total loss: [1m[32m0.58564[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58564 -- iter: 0704/1309
## [A[ATraining Step: 209 | total loss: [1m[32m0.58657[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58657 -- iter: 0720/1309
## [A[ATraining Step: 210 | total loss: [1m[32m0.58406[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58406 -- iter: 0736/1309
## [A[ATraining Step: 211 | total loss: [1m[32m0.56591[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.56591 -- iter: 0752/1309
## [A[ATraining Step: 212 | total loss: [1m[32m0.55788[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.55788 -- iter: 0768/1309
## [A[ATraining Step: 213 | total loss: [1m[32m0.57172[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.57172 -- iter: 0784/1309
## [A[ATraining Step: 214 | total loss: [1m[32m0.57342[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.57342 -- iter: 0800/1309
## [A[ATraining Step: 215 | total loss: [1m[32m0.56450[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.56450 -- iter: 0816/1309
## [A[ATraining Step: 216 | total loss: [1m[32m0.55292[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.55292 -- iter: 0832/1309
## [A[ATraining Step: 217 | total loss: [1m[32m0.52791[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.52791 -- iter: 0848/1309
## [A[ATraining Step: 218 | total loss: [1m[32m0.54016[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.54016 -- iter: 0864/1309
## [A[ATraining Step: 219 | total loss: [1m[32m0.56788[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.56788 -- iter: 0880/1309
## [A[ATraining Step: 220 | total loss: [1m[32m0.57008[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.57008 -- iter: 0896/1309
## [A[ATraining Step: 221 | total loss: [1m[32m0.58600[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58600 -- iter: 0912/1309
## [A[ATraining Step: 222 | total loss: [1m[32m0.58522[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58522 -- iter: 0928/1309
## [A[ATraining Step: 223 | total loss: [1m[32m0.57539[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.57539 -- iter: 0944/1309
## [A[ATraining Step: 224 | total loss: [1m[32m0.56883[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.56883 -- iter: 0960/1309
## [A[ATraining Step: 225 | total loss: [1m[32m0.67163[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.67163 -- iter: 0976/1309
## [A[ATraining Step: 226 | total loss: [1m[32m0.66065[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.66065 -- iter: 0992/1309
## [A[ATraining Step: 227 | total loss: [1m[32m0.70717[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.70717 -- iter: 1008/1309
## [A[ATraining Step: 228 | total loss: [1m[32m0.68692[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.68692 -- iter: 1024/1309
## [A[ATraining Step: 229 | total loss: [1m[32m0.67020[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.67020 -- iter: 1040/1309
## [A[ATraining Step: 230 | total loss: [1m[32m0.65148[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.65148 -- iter: 1056/1309
## [A[ATraining Step: 231 | total loss: [1m[32m0.64365[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.64365 -- iter: 1072/1309
## [A[ATraining Step: 232 | total loss: [1m[32m0.63155[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.63155 -- iter: 1088/1309
## [A[ATraining Step: 233 | total loss: [1m[32m0.62207[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.62207 -- iter: 1104/1309
## [A[ATraining Step: 234 | total loss: [1m[32m0.61800[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.61800 -- iter: 1120/1309
## [A[ATraining Step: 235 | total loss: [1m[32m0.61652[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.61652 -- iter: 1136/1309
## [A[ATraining Step: 236 | total loss: [1m[32m0.60647[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60647 -- iter: 1152/1309
## [A[ATraining Step: 237 | total loss: [1m[32m0.59738[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59738 -- iter: 1168/1309
## [A[ATraining Step: 238 | total loss: [1m[32m0.62096[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.62096 -- iter: 1184/1309
## [A[ATraining Step: 239 | total loss: [1m[32m0.61733[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.61733 -- iter: 1200/1309
## [A[ATraining Step: 240 | total loss: [1m[32m0.60355[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60355 -- iter: 1216/1309
## [A[ATraining Step: 241 | total loss: [1m[32m0.60376[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60376 -- iter: 1232/1309
## [A[ATraining Step: 242 | total loss: [1m[32m0.59539[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59539 -- iter: 1248/1309
## [A[ATraining Step: 243 | total loss: [1m[32m0.60330[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60330 -- iter: 1264/1309
## [A[ATraining Step: 244 | total loss: [1m[32m0.59053[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.59053 -- iter: 1280/1309
## [A[ATraining Step: 245 | total loss: [1m[32m0.58757[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.58757 -- iter: 1296/1309
## [A[ATraining Step: 246 | total loss: [1m[32m0.60208[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60208 -- iter: 1309/1309
## [A[ATraining Step: 246 | total loss: [1m[32m0.60208[0m[0m
## [2K
| Adam | epoch: 003 | loss: 0.60208 -- iter: 1309/1309
## --
## Training Step: 247 | total loss: [1m[32m0.58904[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58904 -- iter: 0016/1309
## [A[ATraining Step: 248 | total loss: [1m[32m0.59313[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.59313 -- iter: 0032/1309
## [A[ATraining Step: 249 | total loss: [1m[32m0.58757[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58757 -- iter: 0048/1309
## [A[ATraining Step: 250 | total loss: [1m[32m0.58262[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58262 -- iter: 0064/1309
## [A[ATraining Step: 251 | total loss: [1m[32m0.57608[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57608 -- iter: 0080/1309
## [A[ATraining Step: 252 | total loss: [1m[32m0.56900[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56900 -- iter: 0096/1309
## [A[ATraining Step: 253 | total loss: [1m[32m0.56565[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56565 -- iter: 0112/1309
## [A[ATraining Step: 254 | total loss: [1m[32m0.56027[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56027 -- iter: 0128/1309
## [A[ATraining Step: 255 | total loss: [1m[32m0.55442[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55442 -- iter: 0144/1309
## [A[ATraining Step: 256 | total loss: [1m[32m0.55393[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55393 -- iter: 0160/1309
## [A[ATraining Step: 257 | total loss: [1m[32m0.55163[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55163 -- iter: 0176/1309
## [A[ATraining Step: 258 | total loss: [1m[32m0.54357[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.54357 -- iter: 0192/1309
## [A[ATraining Step: 259 | total loss: [1m[32m0.55113[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55113 -- iter: 0208/1309
## [A[ATraining Step: 260 | total loss: [1m[32m0.55031[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55031 -- iter: 0224/1309
## [A[ATraining Step: 261 | total loss: [1m[32m0.56082[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56082 -- iter: 0240/1309
## [A[ATraining Step: 262 | total loss: [1m[32m0.58804[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58804 -- iter: 0256/1309
## [A[ATraining Step: 263 | total loss: [1m[32m0.60198[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.60198 -- iter: 0272/1309
## [A[ATraining Step: 264 | total loss: [1m[32m0.59900[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.59900 -- iter: 0288/1309
## [A[ATraining Step: 265 | total loss: [1m[32m0.57824[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57824 -- iter: 0304/1309
## [A[ATraining Step: 266 | total loss: [1m[32m0.57968[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57968 -- iter: 0320/1309
## [A[ATraining Step: 267 | total loss: [1m[32m0.58085[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58085 -- iter: 0336/1309
## [A[ATraining Step: 268 | total loss: [1m[32m0.58790[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58790 -- iter: 0352/1309
## [A[ATraining Step: 269 | total loss: [1m[32m0.57950[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57950 -- iter: 0368/1309
## [A[ATraining Step: 270 | total loss: [1m[32m0.58130[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58130 -- iter: 0384/1309
## [A[ATraining Step: 271 | total loss: [1m[32m0.56741[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56741 -- iter: 0400/1309
## [A[ATraining Step: 272 | total loss: [1m[32m0.55103[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55103 -- iter: 0416/1309
## [A[ATraining Step: 273 | total loss: [1m[32m0.54320[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.54320 -- iter: 0432/1309
## [A[ATraining Step: 274 | total loss: [1m[32m0.53017[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.53017 -- iter: 0448/1309
## [A[ATraining Step: 275 | total loss: [1m[32m0.51948[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51948 -- iter: 0464/1309
## [A[ATraining Step: 276 | total loss: [1m[32m0.51908[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51908 -- iter: 0480/1309
## [A[ATraining Step: 277 | total loss: [1m[32m0.51421[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51421 -- iter: 0496/1309
## [A[ATraining Step: 278 | total loss: [1m[32m0.54710[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.54710 -- iter: 0512/1309
## [A[ATraining Step: 279 | total loss: [1m[32m0.56127[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56127 -- iter: 0528/1309
## [A[ATraining Step: 280 | total loss: [1m[32m0.55881[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55881 -- iter: 0544/1309
## [A[ATraining Step: 281 | total loss: [1m[32m0.56014[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56014 -- iter: 0560/1309
## [A[ATraining Step: 282 | total loss: [1m[32m0.58086[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58086 -- iter: 0576/1309
## [A[ATraining Step: 283 | total loss: [1m[32m0.60233[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.60233 -- iter: 0592/1309
## [A[ATraining Step: 284 | total loss: [1m[32m0.59179[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.59179 -- iter: 0608/1309
## [A[ATraining Step: 285 | total loss: [1m[32m0.60447[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.60447 -- iter: 0624/1309
## [A[ATraining Step: 286 | total loss: [1m[32m0.60877[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.60877 -- iter: 0640/1309
## [A[ATraining Step: 287 | total loss: [1m[32m0.61401[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.61401 -- iter: 0656/1309
## [A[ATraining Step: 288 | total loss: [1m[32m0.62061[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.62061 -- iter: 0672/1309
## [A[ATraining Step: 289 | total loss: [1m[32m0.63692[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.63692 -- iter: 0688/1309
## [A[ATraining Step: 290 | total loss: [1m[32m0.62295[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.62295 -- iter: 0704/1309
## [A[ATraining Step: 291 | total loss: [1m[32m0.61024[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.61024 -- iter: 0720/1309
## [A[ATraining Step: 292 | total loss: [1m[32m0.59790[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.59790 -- iter: 0736/1309
## [A[ATraining Step: 293 | total loss: [1m[32m0.59109[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.59109 -- iter: 0752/1309
## [A[ATraining Step: 294 | total loss: [1m[32m0.58131[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58131 -- iter: 0768/1309
## [A[ATraining Step: 295 | total loss: [1m[32m0.58081[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58081 -- iter: 0784/1309
## [A[ATraining Step: 296 | total loss: [1m[32m0.56548[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56548 -- iter: 0800/1309
## [A[ATraining Step: 297 | total loss: [1m[32m0.55767[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55767 -- iter: 0816/1309
## [A[ATraining Step: 298 | total loss: [1m[32m0.54686[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.54686 -- iter: 0832/1309
## [A[ATraining Step: 299 | total loss: [1m[32m0.55519[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55519 -- iter: 0848/1309
## [A[ATraining Step: 300 | total loss: [1m[32m0.57195[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57195 -- iter: 0864/1309
## [A[ATraining Step: 301 | total loss: [1m[32m0.58178[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58178 -- iter: 0880/1309
## [A[ATraining Step: 302 | total loss: [1m[32m0.58497[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58497 -- iter: 0896/1309
## [A[ATraining Step: 303 | total loss: [1m[32m0.59673[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.59673 -- iter: 0912/1309
## [A[ATraining Step: 304 | total loss: [1m[32m0.58069[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.58069 -- iter: 0928/1309
## [A[ATraining Step: 305 | total loss: [1m[32m0.57820[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57820 -- iter: 0944/1309
## [A[ATraining Step: 306 | total loss: [1m[32m0.57575[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57575 -- iter: 0960/1309
## [A[ATraining Step: 307 | total loss: [1m[32m0.54906[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.54906 -- iter: 0976/1309
## [A[ATraining Step: 308 | total loss: [1m[32m0.55945[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55945 -- iter: 0992/1309
## [A[ATraining Step: 309 | total loss: [1m[32m0.56265[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56265 -- iter: 1008/1309
## [A[ATraining Step: 310 | total loss: [1m[32m0.55383[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55383 -- iter: 1024/1309
## [A[ATraining Step: 311 | total loss: [1m[32m0.53683[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.53683 -- iter: 1040/1309
## [A[ATraining Step: 312 | total loss: [1m[32m0.53846[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.53846 -- iter: 1056/1309
## [A[ATraining Step: 313 | total loss: [1m[32m0.51816[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51816 -- iter: 1072/1309
## [A[ATraining Step: 314 | total loss: [1m[32m0.51707[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51707 -- iter: 1088/1309
## [A[ATraining Step: 315 | total loss: [1m[32m0.51637[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51637 -- iter: 1104/1309
## [A[ATraining Step: 316 | total loss: [1m[32m0.51711[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51711 -- iter: 1120/1309
## [A[ATraining Step: 317 | total loss: [1m[32m0.51210[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51210 -- iter: 1136/1309
## [A[ATraining Step: 318 | total loss: [1m[32m0.51969[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51969 -- iter: 1152/1309
## [A[ATraining Step: 319 | total loss: [1m[32m0.53966[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.53966 -- iter: 1168/1309
## [A[ATraining Step: 320 | total loss: [1m[32m0.51365[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.51365 -- iter: 1184/1309
## [A[ATraining Step: 321 | total loss: [1m[32m0.52174[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.52174 -- iter: 1200/1309
## [A[ATraining Step: 322 | total loss: [1m[32m0.52542[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.52542 -- iter: 1216/1309
## [A[ATraining Step: 323 | total loss: [1m[32m0.53396[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.53396 -- iter: 1232/1309
## [A[ATraining Step: 324 | total loss: [1m[32m0.55407[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55407 -- iter: 1248/1309
## [A[ATraining Step: 325 | total loss: [1m[32m0.55854[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.55854 -- iter: 1264/1309
## [A[ATraining Step: 326 | total loss: [1m[32m0.56493[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56493 -- iter: 1280/1309
## [A[ATraining Step: 327 | total loss: [1m[32m0.56765[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.56765 -- iter: 1296/1309
## [A[ATraining Step: 328 | total loss: [1m[32m0.57511[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57511 -- iter: 1309/1309
## [A[ATraining Step: 328 | total loss: [1m[32m0.57511[0m[0m
## [2K
| Adam | epoch: 004 | loss: 0.57511 -- iter: 1309/1309
## --
## Training Step: 329 | total loss: [1m[32m0.59911[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.59911 -- iter: 0016/1309
## [A[ATraining Step: 330 | total loss: [1m[32m0.59677[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.59677 -- iter: 0032/1309
## [A[ATraining Step: 331 | total loss: [1m[32m0.59434[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.59434 -- iter: 0048/1309
## [A[ATraining Step: 332 | total loss: [1m[32m0.60990[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60990 -- iter: 0064/1309
## [A[ATraining Step: 333 | total loss: [1m[32m0.62114[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.62114 -- iter: 0080/1309
## [A[ATraining Step: 334 | total loss: [1m[32m0.61200[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.61200 -- iter: 0096/1309
## [A[ATraining Step: 335 | total loss: [1m[32m0.60401[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60401 -- iter: 0112/1309
## [A[ATraining Step: 336 | total loss: [1m[32m0.60840[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60840 -- iter: 0128/1309
## [A[ATraining Step: 337 | total loss: [1m[32m0.61530[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.61530 -- iter: 0144/1309
## [A[ATraining Step: 338 | total loss: [1m[32m0.60168[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60168 -- iter: 0160/1309
## [A[ATraining Step: 339 | total loss: [1m[32m0.59425[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.59425 -- iter: 0176/1309
## [A[ATraining Step: 340 | total loss: [1m[32m0.58197[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.58197 -- iter: 0192/1309
## [A[ATraining Step: 341 | total loss: [1m[32m0.58887[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.58887 -- iter: 0208/1309
## [A[ATraining Step: 342 | total loss: [1m[32m0.58918[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.58918 -- iter: 0224/1309
## [A[ATraining Step: 343 | total loss: [1m[32m0.59172[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.59172 -- iter: 0240/1309
## [A[ATraining Step: 344 | total loss: [1m[32m0.58281[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.58281 -- iter: 0256/1309
## [A[ATraining Step: 345 | total loss: [1m[32m0.58181[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.58181 -- iter: 0272/1309
## [A[ATraining Step: 346 | total loss: [1m[32m0.60307[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60307 -- iter: 0288/1309
## [A[ATraining Step: 347 | total loss: [1m[32m0.61307[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.61307 -- iter: 0304/1309
## [A[ATraining Step: 348 | total loss: [1m[32m0.62016[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.62016 -- iter: 0320/1309
## [A[ATraining Step: 349 | total loss: [1m[32m0.60497[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60497 -- iter: 0336/1309
## [A[ATraining Step: 350 | total loss: [1m[32m0.60172[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60172 -- iter: 0352/1309
## [A[ATraining Step: 351 | total loss: [1m[32m0.58619[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.58619 -- iter: 0368/1309
## [A[ATraining Step: 352 | total loss: [1m[32m0.60541[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60541 -- iter: 0384/1309
## [A[ATraining Step: 353 | total loss: [1m[32m0.60002[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.60002 -- iter: 0400/1309
## [A[ATraining Step: 354 | total loss: [1m[32m0.59073[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.59073 -- iter: 0416/1309
## [A[ATraining Step: 355 | total loss: [1m[32m0.57698[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.57698 -- iter: 0432/1309
## [A[ATraining Step: 356 | total loss: [1m[32m0.56312[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.56312 -- iter: 0448/1309
## [A[ATraining Step: 357 | total loss: [1m[32m0.56093[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.56093 -- iter: 0464/1309
## [A[ATraining Step: 358 | total loss: [1m[32m0.55823[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55823 -- iter: 0480/1309
## [A[ATraining Step: 359 | total loss: [1m[32m0.54778[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54778 -- iter: 0496/1309
## [A[ATraining Step: 360 | total loss: [1m[32m0.54495[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54495 -- iter: 0512/1309
## [A[ATraining Step: 361 | total loss: [1m[32m0.54497[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54497 -- iter: 0528/1309
## [A[ATraining Step: 362 | total loss: [1m[32m0.56057[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.56057 -- iter: 0544/1309
## [A[ATraining Step: 363 | total loss: [1m[32m0.54822[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54822 -- iter: 0560/1309
## [A[ATraining Step: 364 | total loss: [1m[32m0.54325[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54325 -- iter: 0576/1309
## [A[ATraining Step: 365 | total loss: [1m[32m0.54872[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54872 -- iter: 0592/1309
## [A[ATraining Step: 366 | total loss: [1m[32m0.54574[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54574 -- iter: 0608/1309
## [A[ATraining Step: 367 | total loss: [1m[32m0.53003[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53003 -- iter: 0624/1309
## [A[ATraining Step: 368 | total loss: [1m[32m0.52612[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.52612 -- iter: 0640/1309
## [A[ATraining Step: 369 | total loss: [1m[32m0.54697[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54697 -- iter: 0656/1309
## [A[ATraining Step: 370 | total loss: [1m[32m0.54982[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54982 -- iter: 0672/1309
## [A[ATraining Step: 371 | total loss: [1m[32m0.54231[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54231 -- iter: 0688/1309
## [A[ATraining Step: 372 | total loss: [1m[32m0.55848[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55848 -- iter: 0704/1309
## [A[ATraining Step: 373 | total loss: [1m[32m0.55166[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55166 -- iter: 0720/1309
## [A[ATraining Step: 374 | total loss: [1m[32m0.54261[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54261 -- iter: 0736/1309
## [A[ATraining Step: 375 | total loss: [1m[32m0.55012[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55012 -- iter: 0752/1309
## [A[ATraining Step: 376 | total loss: [1m[32m0.53514[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53514 -- iter: 0768/1309
## [A[ATraining Step: 377 | total loss: [1m[32m0.58191[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.58191 -- iter: 0784/1309
## [A[ATraining Step: 378 | total loss: [1m[32m0.56494[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.56494 -- iter: 0800/1309
## [A[ATraining Step: 379 | total loss: [1m[32m0.56030[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.56030 -- iter: 0816/1309
## [A[ATraining Step: 380 | total loss: [1m[32m0.55466[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55466 -- iter: 0832/1309
## [A[ATraining Step: 381 | total loss: [1m[32m0.56226[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.56226 -- iter: 0848/1309
## [A[ATraining Step: 382 | total loss: [1m[32m0.57257[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.57257 -- iter: 0864/1309
## [A[ATraining Step: 383 | total loss: [1m[32m0.55733[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55733 -- iter: 0880/1309
## [A[ATraining Step: 384 | total loss: [1m[32m0.54731[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54731 -- iter: 0896/1309
## [A[ATraining Step: 385 | total loss: [1m[32m0.55649[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55649 -- iter: 0912/1309
## [A[ATraining Step: 386 | total loss: [1m[32m0.56103[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.56103 -- iter: 0928/1309
## [A[ATraining Step: 387 | total loss: [1m[32m0.53059[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53059 -- iter: 0944/1309
## [A[ATraining Step: 388 | total loss: [1m[32m0.50710[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.50710 -- iter: 0960/1309
## [A[ATraining Step: 389 | total loss: [1m[32m0.53147[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53147 -- iter: 0976/1309
## [A[ATraining Step: 390 | total loss: [1m[32m0.52775[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.52775 -- iter: 0992/1309
## [A[ATraining Step: 391 | total loss: [1m[32m0.53337[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53337 -- iter: 1008/1309
## [A[ATraining Step: 392 | total loss: [1m[32m0.54501[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54501 -- iter: 1024/1309
## [A[ATraining Step: 393 | total loss: [1m[32m0.53330[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53330 -- iter: 1040/1309
## [A[ATraining Step: 394 | total loss: [1m[32m0.54652[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54652 -- iter: 1056/1309
## [A[ATraining Step: 395 | total loss: [1m[32m0.54738[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54738 -- iter: 1072/1309
## [A[ATraining Step: 396 | total loss: [1m[32m0.54070[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54070 -- iter: 1088/1309
## [A[ATraining Step: 397 | total loss: [1m[32m0.53361[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53361 -- iter: 1104/1309
## [A[ATraining Step: 398 | total loss: [1m[32m0.53442[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53442 -- iter: 1120/1309
## [A[ATraining Step: 399 | total loss: [1m[32m0.53920[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53920 -- iter: 1136/1309
## [A[ATraining Step: 400 | total loss: [1m[32m0.52721[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.52721 -- iter: 1152/1309
## [A[ATraining Step: 401 | total loss: [1m[32m0.53453[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53453 -- iter: 1168/1309
## [A[ATraining Step: 402 | total loss: [1m[32m0.52093[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.52093 -- iter: 1184/1309
## [A[ATraining Step: 403 | total loss: [1m[32m0.51727[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.51727 -- iter: 1200/1309
## [A[ATraining Step: 404 | total loss: [1m[32m0.52211[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.52211 -- iter: 1216/1309
## [A[ATraining Step: 405 | total loss: [1m[32m0.51617[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.51617 -- iter: 1232/1309
## [A[ATraining Step: 406 | total loss: [1m[32m0.53185[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.53185 -- iter: 1248/1309
## [A[ATraining Step: 407 | total loss: [1m[32m0.54132[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54132 -- iter: 1264/1309
## [A[ATraining Step: 408 | total loss: [1m[32m0.54975[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.54975 -- iter: 1280/1309
## [A[ATraining Step: 409 | total loss: [1m[32m0.55429[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55429 -- iter: 1296/1309
## [A[ATraining Step: 410 | total loss: [1m[32m0.55120[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55120 -- iter: 1309/1309
## [A[ATraining Step: 410 | total loss: [1m[32m0.55120[0m[0m
## [2K
| Adam | epoch: 005 | loss: 0.55120 -- iter: 1309/1309
## --
## Training Step: 411 | total loss: [1m[32m0.53384[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53384 -- iter: 0016/1309
## [A[ATraining Step: 412 | total loss: [1m[32m0.52120[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52120 -- iter: 0032/1309
## [A[ATraining Step: 413 | total loss: [1m[32m0.51288[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51288 -- iter: 0048/1309
## [A[ATraining Step: 414 | total loss: [1m[32m0.51588[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51588 -- iter: 0064/1309
## [A[ATraining Step: 415 | total loss: [1m[32m0.50365[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50365 -- iter: 0080/1309
## [A[ATraining Step: 416 | total loss: [1m[32m0.49122[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.49122 -- iter: 0096/1309
## [A[ATraining Step: 417 | total loss: [1m[32m0.49233[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.49233 -- iter: 0112/1309
## [A[ATraining Step: 418 | total loss: [1m[32m0.51224[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51224 -- iter: 0128/1309
## [A[ATraining Step: 419 | total loss: [1m[32m0.50858[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50858 -- iter: 0144/1309
## [A[ATraining Step: 420 | total loss: [1m[32m0.50314[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50314 -- iter: 0160/1309
## [A[ATraining Step: 421 | total loss: [1m[32m0.53795[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53795 -- iter: 0176/1309
## [A[ATraining Step: 422 | total loss: [1m[32m0.55880[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55880 -- iter: 0192/1309
## [A[ATraining Step: 423 | total loss: [1m[32m0.54874[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54874 -- iter: 0208/1309
## [A[ATraining Step: 424 | total loss: [1m[32m0.54355[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54355 -- iter: 0224/1309
## [A[ATraining Step: 425 | total loss: [1m[32m0.53506[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53506 -- iter: 0240/1309
## [A[ATraining Step: 426 | total loss: [1m[32m0.53575[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53575 -- iter: 0256/1309
## [A[ATraining Step: 427 | total loss: [1m[32m0.55726[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55726 -- iter: 0272/1309
## [A[ATraining Step: 428 | total loss: [1m[32m0.55200[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55200 -- iter: 0288/1309
## [A[ATraining Step: 429 | total loss: [1m[32m0.57691[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.57691 -- iter: 0304/1309
## [A[ATraining Step: 430 | total loss: [1m[32m0.57154[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.57154 -- iter: 0320/1309
## [A[ATraining Step: 431 | total loss: [1m[32m0.55835[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55835 -- iter: 0336/1309
## [A[ATraining Step: 432 | total loss: [1m[32m0.57252[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.57252 -- iter: 0352/1309
## [A[ATraining Step: 433 | total loss: [1m[32m0.58340[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.58340 -- iter: 0368/1309
## [A[ATraining Step: 434 | total loss: [1m[32m0.59046[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.59046 -- iter: 0384/1309
## [A[ATraining Step: 435 | total loss: [1m[32m0.57644[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.57644 -- iter: 0400/1309
## [A[ATraining Step: 436 | total loss: [1m[32m0.57187[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.57187 -- iter: 0416/1309
## [A[ATraining Step: 437 | total loss: [1m[32m0.55992[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55992 -- iter: 0432/1309
## [A[ATraining Step: 438 | total loss: [1m[32m0.54293[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54293 -- iter: 0448/1309
## [A[ATraining Step: 439 | total loss: [1m[32m0.54211[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54211 -- iter: 0464/1309
## [A[ATraining Step: 440 | total loss: [1m[32m0.52262[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52262 -- iter: 0480/1309
## [A[ATraining Step: 441 | total loss: [1m[32m0.51150[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51150 -- iter: 0496/1309
## [A[ATraining Step: 442 | total loss: [1m[32m0.51424[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51424 -- iter: 0512/1309
## [A[ATraining Step: 443 | total loss: [1m[32m0.52442[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52442 -- iter: 0528/1309
## [A[ATraining Step: 444 | total loss: [1m[32m0.51202[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51202 -- iter: 0544/1309
## [A[ATraining Step: 445 | total loss: [1m[32m0.49032[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.49032 -- iter: 0560/1309
## [A[ATraining Step: 446 | total loss: [1m[32m0.50445[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50445 -- iter: 0576/1309
## [A[ATraining Step: 447 | total loss: [1m[32m0.50811[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50811 -- iter: 0592/1309
## [A[ATraining Step: 448 | total loss: [1m[32m0.52500[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52500 -- iter: 0608/1309
## [A[ATraining Step: 449 | total loss: [1m[32m0.55719[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55719 -- iter: 0624/1309
## [A[ATraining Step: 450 | total loss: [1m[32m0.55204[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55204 -- iter: 0640/1309
## [A[ATraining Step: 451 | total loss: [1m[32m0.56567[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.56567 -- iter: 0656/1309
## [A[ATraining Step: 452 | total loss: [1m[32m0.56934[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.56934 -- iter: 0672/1309
## [A[ATraining Step: 453 | total loss: [1m[32m0.55788[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55788 -- iter: 0688/1309
## [A[ATraining Step: 454 | total loss: [1m[32m0.56944[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.56944 -- iter: 0704/1309
## [A[ATraining Step: 455 | total loss: [1m[32m0.55731[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55731 -- iter: 0720/1309
## [A[ATraining Step: 456 | total loss: [1m[32m0.55300[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55300 -- iter: 0736/1309
## [A[ATraining Step: 457 | total loss: [1m[32m0.55490[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55490 -- iter: 0752/1309
## [A[ATraining Step: 458 | total loss: [1m[32m0.54596[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54596 -- iter: 0768/1309
## [A[ATraining Step: 459 | total loss: [1m[32m0.56047[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.56047 -- iter: 0784/1309
## [A[ATraining Step: 460 | total loss: [1m[32m0.54280[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54280 -- iter: 0800/1309
## [A[ATraining Step: 461 | total loss: [1m[32m0.52995[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52995 -- iter: 0816/1309
## [A[ATraining Step: 462 | total loss: [1m[32m0.54352[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54352 -- iter: 0832/1309
## [A[ATraining Step: 463 | total loss: [1m[32m0.53405[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53405 -- iter: 0848/1309
## [A[ATraining Step: 464 | total loss: [1m[32m0.53379[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53379 -- iter: 0864/1309
## [A[ATraining Step: 465 | total loss: [1m[32m0.53382[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53382 -- iter: 0880/1309
## [A[ATraining Step: 466 | total loss: [1m[32m0.56037[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.56037 -- iter: 0896/1309
## [A[ATraining Step: 467 | total loss: [1m[32m0.57653[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.57653 -- iter: 0912/1309
## [A[ATraining Step: 468 | total loss: [1m[32m0.57010[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.57010 -- iter: 0928/1309
## [A[ATraining Step: 469 | total loss: [1m[32m0.55535[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.55535 -- iter: 0944/1309
## [A[ATraining Step: 470 | total loss: [1m[32m0.53989[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53989 -- iter: 0960/1309
## [A[ATraining Step: 471 | total loss: [1m[32m0.54917[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54917 -- iter: 0976/1309
## [A[ATraining Step: 472 | total loss: [1m[32m0.51833[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51833 -- iter: 0992/1309
## [A[ATraining Step: 473 | total loss: [1m[32m0.49558[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.49558 -- iter: 1008/1309
## [A[ATraining Step: 474 | total loss: [1m[32m0.51622[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51622 -- iter: 1024/1309
## [A[ATraining Step: 475 | total loss: [1m[32m0.52735[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52735 -- iter: 1040/1309
## [A[ATraining Step: 476 | total loss: [1m[32m0.54198[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.54198 -- iter: 1056/1309
## [A[ATraining Step: 477 | total loss: [1m[32m0.53649[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.53649 -- iter: 1072/1309
## [A[ATraining Step: 478 | total loss: [1m[32m0.52915[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52915 -- iter: 1088/1309
## [A[ATraining Step: 479 | total loss: [1m[32m0.52585[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52585 -- iter: 1104/1309
## [A[ATraining Step: 480 | total loss: [1m[32m0.50843[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50843 -- iter: 1120/1309
## [A[ATraining Step: 481 | total loss: [1m[32m0.50174[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50174 -- iter: 1136/1309
## [A[ATraining Step: 482 | total loss: [1m[32m0.48733[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.48733 -- iter: 1152/1309
## [A[ATraining Step: 483 | total loss: [1m[32m0.49309[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.49309 -- iter: 1168/1309
## [A[ATraining Step: 484 | total loss: [1m[32m0.48069[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.48069 -- iter: 1184/1309
## [A[ATraining Step: 485 | total loss: [1m[32m0.50192[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50192 -- iter: 1200/1309
## [A[ATraining Step: 486 | total loss: [1m[32m0.49704[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.49704 -- iter: 1216/1309
## [A[ATraining Step: 487 | total loss: [1m[32m0.49197[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.49197 -- iter: 1232/1309
## [A[ATraining Step: 488 | total loss: [1m[32m0.52036[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.52036 -- iter: 1248/1309
## [A[ATraining Step: 489 | total loss: [1m[32m0.50685[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.50685 -- iter: 1264/1309
## [A[ATraining Step: 490 | total loss: [1m[32m0.51446[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.51446 -- iter: 1280/1309
## [A[ATraining Step: 491 | total loss: [1m[32m0.49641[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.49641 -- iter: 1296/1309
## [A[ATraining Step: 492 | total loss: [1m[32m0.48086[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.48086 -- iter: 1309/1309
## [A[ATraining Step: 492 | total loss: [1m[32m0.48086[0m[0m
## [2K
| Adam | epoch: 006 | loss: 0.48086 -- iter: 1309/1309
## --
## Training Step: 493 | total loss: [1m[32m0.47611[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.47611 -- iter: 0016/1309
## [A[ATraining Step: 494 | total loss: [1m[32m0.48365[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48365 -- iter: 0032/1309
## [A[ATraining Step: 495 | total loss: [1m[32m0.48764[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48764 -- iter: 0048/1309
## [A[ATraining Step: 496 | total loss: [1m[32m0.48610[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48610 -- iter: 0064/1309
## [A[ATraining Step: 497 | total loss: [1m[32m0.49741[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49741 -- iter: 0080/1309
## [A[ATraining Step: 498 | total loss: [1m[32m0.48577[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48577 -- iter: 0096/1309
## [A[ATraining Step: 499 | total loss: [1m[32m0.47444[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.47444 -- iter: 0112/1309
## [A[ATraining Step: 500 | total loss: [1m[32m0.48810[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48810 -- iter: 0128/1309
## [A[ATraining Step: 501 | total loss: [1m[32m0.48331[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48331 -- iter: 0144/1309
## [A[ATraining Step: 502 | total loss: [1m[32m0.48506[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48506 -- iter: 0160/1309
## [A[ATraining Step: 503 | total loss: [1m[32m0.49404[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49404 -- iter: 0176/1309
## [A[ATraining Step: 504 | total loss: [1m[32m0.52421[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52421 -- iter: 0192/1309
## [A[ATraining Step: 505 | total loss: [1m[32m0.52734[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52734 -- iter: 0208/1309
## [A[ATraining Step: 506 | total loss: [1m[32m0.51502[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51502 -- iter: 0224/1309
## [A[ATraining Step: 507 | total loss: [1m[32m0.50748[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50748 -- iter: 0240/1309
## [A[ATraining Step: 508 | total loss: [1m[32m0.51850[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51850 -- iter: 0256/1309
## [A[ATraining Step: 509 | total loss: [1m[32m0.51918[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51918 -- iter: 0272/1309
## [A[ATraining Step: 510 | total loss: [1m[32m0.52977[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52977 -- iter: 0288/1309
## [A[ATraining Step: 511 | total loss: [1m[32m0.54017[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.54017 -- iter: 0304/1309
## [A[ATraining Step: 512 | total loss: [1m[32m0.52931[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52931 -- iter: 0320/1309
## [A[ATraining Step: 513 | total loss: [1m[32m0.55541[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.55541 -- iter: 0336/1309
## [A[ATraining Step: 514 | total loss: [1m[32m0.55370[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.55370 -- iter: 0352/1309
## [A[ATraining Step: 515 | total loss: [1m[32m0.56110[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.56110 -- iter: 0368/1309
## [A[ATraining Step: 516 | total loss: [1m[32m0.55934[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.55934 -- iter: 0384/1309
## [A[ATraining Step: 517 | total loss: [1m[32m0.55248[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.55248 -- iter: 0400/1309
## [A[ATraining Step: 518 | total loss: [1m[32m0.55707[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.55707 -- iter: 0416/1309
## [A[ATraining Step: 519 | total loss: [1m[32m0.56100[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.56100 -- iter: 0432/1309
## [A[ATraining Step: 520 | total loss: [1m[32m0.54835[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.54835 -- iter: 0448/1309
## [A[ATraining Step: 521 | total loss: [1m[32m0.53571[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53571 -- iter: 0464/1309
## [A[ATraining Step: 522 | total loss: [1m[32m0.54911[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.54911 -- iter: 0480/1309
## [A[ATraining Step: 523 | total loss: [1m[32m0.54980[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.54980 -- iter: 0496/1309
## [A[ATraining Step: 524 | total loss: [1m[32m0.55034[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.55034 -- iter: 0512/1309
## [A[ATraining Step: 525 | total loss: [1m[32m0.55191[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.55191 -- iter: 0528/1309
## [A[ATraining Step: 526 | total loss: [1m[32m0.56211[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.56211 -- iter: 0544/1309
## [A[ATraining Step: 527 | total loss: [1m[32m0.56175[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.56175 -- iter: 0560/1309
## [A[ATraining Step: 528 | total loss: [1m[32m0.54596[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.54596 -- iter: 0576/1309
## [A[ATraining Step: 529 | total loss: [1m[32m0.53432[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53432 -- iter: 0592/1309
## [A[ATraining Step: 530 | total loss: [1m[32m0.53672[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53672 -- iter: 0608/1309
## [A[ATraining Step: 531 | total loss: [1m[32m0.53149[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53149 -- iter: 0624/1309
## [A[ATraining Step: 532 | total loss: [1m[32m0.51577[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51577 -- iter: 0640/1309
## [A[ATraining Step: 533 | total loss: [1m[32m0.49904[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49904 -- iter: 0656/1309
## [A[ATraining Step: 534 | total loss: [1m[32m0.49564[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49564 -- iter: 0672/1309
## [A[ATraining Step: 535 | total loss: [1m[32m0.49349[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49349 -- iter: 0688/1309
## [A[ATraining Step: 536 | total loss: [1m[32m0.52466[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52466 -- iter: 0704/1309
## [A[ATraining Step: 537 | total loss: [1m[32m0.52123[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52123 -- iter: 0720/1309
## [A[ATraining Step: 538 | total loss: [1m[32m0.51911[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51911 -- iter: 0736/1309
## [A[ATraining Step: 539 | total loss: [1m[32m0.50762[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50762 -- iter: 0752/1309
## [A[ATraining Step: 540 | total loss: [1m[32m0.52476[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52476 -- iter: 0768/1309
## [A[ATraining Step: 541 | total loss: [1m[32m0.54955[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.54955 -- iter: 0784/1309
## [A[ATraining Step: 542 | total loss: [1m[32m0.53428[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53428 -- iter: 0800/1309
## [A[ATraining Step: 543 | total loss: [1m[32m0.51214[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51214 -- iter: 0816/1309
## [A[ATraining Step: 544 | total loss: [1m[32m0.49665[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49665 -- iter: 0832/1309
## [A[ATraining Step: 545 | total loss: [1m[32m0.48487[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48487 -- iter: 0848/1309
## [A[ATraining Step: 546 | total loss: [1m[32m0.52839[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52839 -- iter: 0864/1309
## [A[ATraining Step: 547 | total loss: [1m[32m0.53182[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53182 -- iter: 0880/1309
## [A[ATraining Step: 548 | total loss: [1m[32m0.52458[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52458 -- iter: 0896/1309
## [A[ATraining Step: 549 | total loss: [1m[32m0.52640[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52640 -- iter: 0912/1309
## [A[ATraining Step: 550 | total loss: [1m[32m0.50974[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50974 -- iter: 0928/1309
## [A[ATraining Step: 551 | total loss: [1m[32m0.50546[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50546 -- iter: 0944/1309
## [A[ATraining Step: 552 | total loss: [1m[32m0.50031[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50031 -- iter: 0960/1309
## [A[ATraining Step: 553 | total loss: [1m[32m0.50430[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50430 -- iter: 0976/1309
## [A[ATraining Step: 554 | total loss: [1m[32m0.49321[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49321 -- iter: 0992/1309
## [A[ATraining Step: 555 | total loss: [1m[32m0.51029[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51029 -- iter: 1008/1309
## [A[ATraining Step: 556 | total loss: [1m[32m0.51622[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51622 -- iter: 1024/1309
## [A[ATraining Step: 557 | total loss: [1m[32m0.49646[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49646 -- iter: 1040/1309
## [A[ATraining Step: 558 | total loss: [1m[32m0.50122[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50122 -- iter: 1056/1309
## [A[ATraining Step: 559 | total loss: [1m[32m0.50512[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50512 -- iter: 1072/1309
## [A[ATraining Step: 560 | total loss: [1m[32m0.51182[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51182 -- iter: 1088/1309
## [A[ATraining Step: 561 | total loss: [1m[32m0.51462[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51462 -- iter: 1104/1309
## [A[ATraining Step: 562 | total loss: [1m[32m0.53172[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53172 -- iter: 1120/1309
## [A[ATraining Step: 563 | total loss: [1m[32m0.54427[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.54427 -- iter: 1136/1309
## [A[ATraining Step: 564 | total loss: [1m[32m0.53862[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53862 -- iter: 1152/1309
## [A[ATraining Step: 565 | total loss: [1m[32m0.52567[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52567 -- iter: 1168/1309
## [A[ATraining Step: 566 | total loss: [1m[32m0.51571[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51571 -- iter: 1184/1309
## [A[ATraining Step: 567 | total loss: [1m[32m0.49881[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.49881 -- iter: 1200/1309
## [A[ATraining Step: 568 | total loss: [1m[32m0.48347[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.48347 -- iter: 1216/1309
## [A[ATraining Step: 569 | total loss: [1m[32m0.50948[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.50948 -- iter: 1232/1309
## [A[ATraining Step: 570 | total loss: [1m[32m0.51835[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51835 -- iter: 1248/1309
## [A[ATraining Step: 571 | total loss: [1m[32m0.55805[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.55805 -- iter: 1264/1309
## [A[ATraining Step: 572 | total loss: [1m[32m0.53673[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.53673 -- iter: 1280/1309
## [A[ATraining Step: 573 | total loss: [1m[32m0.52719[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.52719 -- iter: 1296/1309
## [A[ATraining Step: 574 | total loss: [1m[32m0.51548[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51548 -- iter: 1309/1309
## [A[ATraining Step: 574 | total loss: [1m[32m0.51548[0m[0m
## [2K
| Adam | epoch: 007 | loss: 0.51548 -- iter: 1309/1309
## --
## Training Step: 575 | total loss: [1m[32m0.51047[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51047 -- iter: 0016/1309
## [A[ATraining Step: 576 | total loss: [1m[32m0.49824[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49824 -- iter: 0032/1309
## [A[ATraining Step: 577 | total loss: [1m[32m0.48585[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.48585 -- iter: 0048/1309
## [A[ATraining Step: 578 | total loss: [1m[32m0.47093[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.47093 -- iter: 0064/1309
## [A[ATraining Step: 579 | total loss: [1m[32m0.47396[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.47396 -- iter: 0080/1309
## [A[ATraining Step: 580 | total loss: [1m[32m0.50810[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50810 -- iter: 0096/1309
## [A[ATraining Step: 581 | total loss: [1m[32m0.52301[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52301 -- iter: 0112/1309
## [A[ATraining Step: 582 | total loss: [1m[32m0.53618[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53618 -- iter: 0128/1309
## [A[ATraining Step: 583 | total loss: [1m[32m0.53567[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53567 -- iter: 0144/1309
## [A[ATraining Step: 584 | total loss: [1m[32m0.57043[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.57043 -- iter: 0160/1309
## [A[ATraining Step: 585 | total loss: [1m[32m0.53909[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53909 -- iter: 0176/1309
## [A[ATraining Step: 586 | total loss: [1m[32m0.52573[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52573 -- iter: 0192/1309
## [A[ATraining Step: 587 | total loss: [1m[32m0.52242[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52242 -- iter: 0208/1309
## [A[ATraining Step: 588 | total loss: [1m[32m0.53885[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53885 -- iter: 0224/1309
## [A[ATraining Step: 589 | total loss: [1m[32m0.53656[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53656 -- iter: 0240/1309
## [A[ATraining Step: 590 | total loss: [1m[32m0.53133[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53133 -- iter: 0256/1309
## [A[ATraining Step: 591 | total loss: [1m[32m0.55099[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.55099 -- iter: 0272/1309
## [A[ATraining Step: 592 | total loss: [1m[32m0.53345[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53345 -- iter: 0288/1309
## [A[ATraining Step: 593 | total loss: [1m[32m0.53150[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53150 -- iter: 0304/1309
## [A[ATraining Step: 594 | total loss: [1m[32m0.52391[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52391 -- iter: 0320/1309
## [A[ATraining Step: 595 | total loss: [1m[32m0.52205[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52205 -- iter: 0336/1309
## [A[ATraining Step: 596 | total loss: [1m[32m0.54782[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.54782 -- iter: 0352/1309
## [A[ATraining Step: 597 | total loss: [1m[32m0.55612[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.55612 -- iter: 0368/1309
## [A[ATraining Step: 598 | total loss: [1m[32m0.54268[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.54268 -- iter: 0384/1309
## [A[ATraining Step: 599 | total loss: [1m[32m0.52596[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52596 -- iter: 0400/1309
## [A[ATraining Step: 600 | total loss: [1m[32m0.50451[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50451 -- iter: 0416/1309
## [A[ATraining Step: 601 | total loss: [1m[32m0.49544[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49544 -- iter: 0432/1309
## [A[ATraining Step: 602 | total loss: [1m[32m0.48945[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.48945 -- iter: 0448/1309
## [A[ATraining Step: 603 | total loss: [1m[32m0.50750[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50750 -- iter: 0464/1309
## [A[ATraining Step: 604 | total loss: [1m[32m0.50369[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50369 -- iter: 0480/1309
## [A[ATraining Step: 605 | total loss: [1m[32m0.48871[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.48871 -- iter: 0496/1309
## [A[ATraining Step: 606 | total loss: [1m[32m0.51515[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51515 -- iter: 0512/1309
## [A[ATraining Step: 607 | total loss: [1m[32m0.51519[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51519 -- iter: 0528/1309
## [A[ATraining Step: 608 | total loss: [1m[32m0.49730[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49730 -- iter: 0544/1309
## [A[ATraining Step: 609 | total loss: [1m[32m0.48156[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.48156 -- iter: 0560/1309
## [A[ATraining Step: 610 | total loss: [1m[32m0.51553[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51553 -- iter: 0576/1309
## [A[ATraining Step: 611 | total loss: [1m[32m0.52549[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52549 -- iter: 0592/1309
## [A[ATraining Step: 612 | total loss: [1m[32m0.52168[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52168 -- iter: 0608/1309
## [A[ATraining Step: 613 | total loss: [1m[32m0.52045[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52045 -- iter: 0624/1309
## [A[ATraining Step: 614 | total loss: [1m[32m0.51196[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51196 -- iter: 0640/1309
## [A[ATraining Step: 615 | total loss: [1m[32m0.51618[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51618 -- iter: 0656/1309
## [A[ATraining Step: 616 | total loss: [1m[32m0.51351[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51351 -- iter: 0672/1309
## [A[ATraining Step: 617 | total loss: [1m[32m0.52318[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52318 -- iter: 0688/1309
## [A[ATraining Step: 618 | total loss: [1m[32m0.54698[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.54698 -- iter: 0704/1309
## [A[ATraining Step: 619 | total loss: [1m[32m0.53689[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.53689 -- iter: 0720/1309
## [A[ATraining Step: 620 | total loss: [1m[32m0.52412[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52412 -- iter: 0736/1309
## [A[ATraining Step: 621 | total loss: [1m[32m0.51648[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51648 -- iter: 0752/1309
## [A[ATraining Step: 622 | total loss: [1m[32m0.49226[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49226 -- iter: 0768/1309
## [A[ATraining Step: 623 | total loss: [1m[32m0.51134[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51134 -- iter: 0784/1309
## [A[ATraining Step: 624 | total loss: [1m[32m0.50075[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50075 -- iter: 0800/1309
## [A[ATraining Step: 625 | total loss: [1m[32m0.51032[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51032 -- iter: 0816/1309
## [A[ATraining Step: 626 | total loss: [1m[32m0.51527[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51527 -- iter: 0832/1309
## [A[ATraining Step: 627 | total loss: [1m[32m0.52213[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52213 -- iter: 0848/1309
## [A[ATraining Step: 628 | total loss: [1m[32m0.51785[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51785 -- iter: 0864/1309
## [A[ATraining Step: 629 | total loss: [1m[32m0.51411[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51411 -- iter: 0880/1309
## [A[ATraining Step: 630 | total loss: [1m[32m0.50180[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50180 -- iter: 0896/1309
## [A[ATraining Step: 631 | total loss: [1m[32m0.52669[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52669 -- iter: 0912/1309
## [A[ATraining Step: 632 | total loss: [1m[32m0.51004[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51004 -- iter: 0928/1309
## [A[ATraining Step: 633 | total loss: [1m[32m0.50625[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50625 -- iter: 0944/1309
## [A[ATraining Step: 634 | total loss: [1m[32m0.49660[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49660 -- iter: 0960/1309
## [A[ATraining Step: 635 | total loss: [1m[32m0.52469[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52469 -- iter: 0976/1309
## [A[ATraining Step: 636 | total loss: [1m[32m0.52406[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52406 -- iter: 0992/1309
## [A[ATraining Step: 637 | total loss: [1m[32m0.52382[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52382 -- iter: 1008/1309
## [A[ATraining Step: 638 | total loss: [1m[32m0.50497[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50497 -- iter: 1024/1309
## [A[ATraining Step: 639 | total loss: [1m[32m0.48558[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.48558 -- iter: 1040/1309
## [A[ATraining Step: 640 | total loss: [1m[32m0.49089[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49089 -- iter: 1056/1309
## [A[ATraining Step: 641 | total loss: [1m[32m0.51976[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51976 -- iter: 1072/1309
## [A[ATraining Step: 642 | total loss: [1m[32m0.50732[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50732 -- iter: 1088/1309
## [A[ATraining Step: 643 | total loss: [1m[32m0.50626[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50626 -- iter: 1104/1309
## [A[ATraining Step: 644 | total loss: [1m[32m0.51667[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51667 -- iter: 1120/1309
## [A[ATraining Step: 645 | total loss: [1m[32m0.52002[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52002 -- iter: 1136/1309
## [A[ATraining Step: 646 | total loss: [1m[32m0.52070[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.52070 -- iter: 1152/1309
## [A[ATraining Step: 647 | total loss: [1m[32m0.51217[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.51217 -- iter: 1168/1309
## [A[ATraining Step: 648 | total loss: [1m[32m0.50714[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.50714 -- iter: 1184/1309
## [A[ATraining Step: 649 | total loss: [1m[32m0.49981[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49981 -- iter: 1200/1309
## [A[ATraining Step: 650 | total loss: [1m[32m0.49141[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49141 -- iter: 1216/1309
## [A[ATraining Step: 651 | total loss: [1m[32m0.48356[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.48356 -- iter: 1232/1309
## [A[ATraining Step: 652 | total loss: [1m[32m0.48347[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.48347 -- iter: 1248/1309
## [A[ATraining Step: 653 | total loss: [1m[32m0.49187[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49187 -- iter: 1264/1309
## [A[ATraining Step: 654 | total loss: [1m[32m0.47813[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.47813 -- iter: 1280/1309
## [A[ATraining Step: 655 | total loss: [1m[32m0.49518[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49518 -- iter: 1296/1309
## [A[ATraining Step: 656 | total loss: [1m[32m0.49155[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49155 -- iter: 1309/1309
## [A[ATraining Step: 656 | total loss: [1m[32m0.49155[0m[0m
## [2K
| Adam | epoch: 008 | loss: 0.49155 -- iter: 1309/1309
## --
## Training Step: 657 | total loss: [1m[32m0.47796[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.47796 -- iter: 0016/1309
## [A[ATraining Step: 658 | total loss: [1m[32m0.46702[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46702 -- iter: 0032/1309
## [A[ATraining Step: 659 | total loss: [1m[32m0.45858[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.45858 -- iter: 0048/1309
## [A[ATraining Step: 660 | total loss: [1m[32m0.47353[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.47353 -- iter: 0064/1309
## [A[ATraining Step: 661 | total loss: [1m[32m0.47999[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.47999 -- iter: 0080/1309
## [A[ATraining Step: 662 | total loss: [1m[32m0.45888[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.45888 -- iter: 0096/1309
## [A[ATraining Step: 663 | total loss: [1m[32m0.44461[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.44461 -- iter: 0112/1309
## [A[ATraining Step: 664 | total loss: [1m[32m0.44976[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.44976 -- iter: 0128/1309
## [A[ATraining Step: 665 | total loss: [1m[32m0.45381[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.45381 -- iter: 0144/1309
## [A[ATraining Step: 666 | total loss: [1m[32m0.46190[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46190 -- iter: 0160/1309
## [A[ATraining Step: 667 | total loss: [1m[32m0.46204[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46204 -- iter: 0176/1309
## [A[ATraining Step: 668 | total loss: [1m[32m0.45657[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.45657 -- iter: 0192/1309
## [A[ATraining Step: 669 | total loss: [1m[32m0.45243[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.45243 -- iter: 0208/1309
## [A[ATraining Step: 670 | total loss: [1m[32m0.44908[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.44908 -- iter: 0224/1309
## [A[ATraining Step: 671 | total loss: [1m[32m0.47022[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.47022 -- iter: 0240/1309
## [A[ATraining Step: 672 | total loss: [1m[32m0.52158[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.52158 -- iter: 0256/1309
## [A[ATraining Step: 673 | total loss: [1m[32m0.52209[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.52209 -- iter: 0272/1309
## [A[ATraining Step: 674 | total loss: [1m[32m0.52726[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.52726 -- iter: 0288/1309
## [A[ATraining Step: 675 | total loss: [1m[32m0.59201[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.59201 -- iter: 0304/1309
## [A[ATraining Step: 676 | total loss: [1m[32m0.56785[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.56785 -- iter: 0320/1309
## [A[ATraining Step: 677 | total loss: [1m[32m0.55726[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.55726 -- iter: 0336/1309
## [A[ATraining Step: 678 | total loss: [1m[32m0.52719[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.52719 -- iter: 0352/1309
## [A[ATraining Step: 679 | total loss: [1m[32m0.57051[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.57051 -- iter: 0368/1309
## [A[ATraining Step: 680 | total loss: [1m[32m0.55395[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.55395 -- iter: 0384/1309
## [A[ATraining Step: 681 | total loss: [1m[32m0.53459[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53459 -- iter: 0400/1309
## [A[ATraining Step: 682 | total loss: [1m[32m0.54440[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.54440 -- iter: 0416/1309
## [A[ATraining Step: 683 | total loss: [1m[32m0.55039[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.55039 -- iter: 0432/1309
## [A[ATraining Step: 684 | total loss: [1m[32m0.54627[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.54627 -- iter: 0448/1309
## [A[ATraining Step: 685 | total loss: [1m[32m0.52749[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.52749 -- iter: 0464/1309
## [A[ATraining Step: 686 | total loss: [1m[32m0.53017[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53017 -- iter: 0480/1309
## [A[ATraining Step: 687 | total loss: [1m[32m0.51743[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51743 -- iter: 0496/1309
## [A[ATraining Step: 688 | total loss: [1m[32m0.53300[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53300 -- iter: 0512/1309
## [A[ATraining Step: 689 | total loss: [1m[32m0.53367[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53367 -- iter: 0528/1309
## [A[ATraining Step: 690 | total loss: [1m[32m0.51895[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51895 -- iter: 0544/1309
## [A[ATraining Step: 691 | total loss: [1m[32m0.51068[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51068 -- iter: 0560/1309
## [A[ATraining Step: 692 | total loss: [1m[32m0.49851[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.49851 -- iter: 0576/1309
## [A[ATraining Step: 693 | total loss: [1m[32m0.48340[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.48340 -- iter: 0592/1309
## [A[ATraining Step: 694 | total loss: [1m[32m0.50324[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.50324 -- iter: 0608/1309
## [A[ATraining Step: 695 | total loss: [1m[32m0.51604[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51604 -- iter: 0624/1309
## [A[ATraining Step: 696 | total loss: [1m[32m0.50107[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.50107 -- iter: 0640/1309
## [A[ATraining Step: 697 | total loss: [1m[32m0.48031[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.48031 -- iter: 0656/1309
## [A[ATraining Step: 698 | total loss: [1m[32m0.50270[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.50270 -- iter: 0672/1309
## [A[ATraining Step: 699 | total loss: [1m[32m0.52066[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.52066 -- iter: 0688/1309
## [A[ATraining Step: 700 | total loss: [1m[32m0.51064[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51064 -- iter: 0704/1309
## [A[ATraining Step: 701 | total loss: [1m[32m0.51972[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51972 -- iter: 0720/1309
## [A[ATraining Step: 702 | total loss: [1m[32m0.51759[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51759 -- iter: 0736/1309
## [A[ATraining Step: 703 | total loss: [1m[32m0.51469[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51469 -- iter: 0752/1309
## [A[ATraining Step: 704 | total loss: [1m[32m0.51418[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51418 -- iter: 0768/1309
## [A[ATraining Step: 705 | total loss: [1m[32m0.54604[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.54604 -- iter: 0784/1309
## [A[ATraining Step: 706 | total loss: [1m[32m0.53391[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53391 -- iter: 0800/1309
## [A[ATraining Step: 707 | total loss: [1m[32m0.51728[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51728 -- iter: 0816/1309
## [A[ATraining Step: 708 | total loss: [1m[32m0.54406[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.54406 -- iter: 0832/1309
## [A[ATraining Step: 709 | total loss: [1m[32m0.57167[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.57167 -- iter: 0848/1309
## [A[ATraining Step: 710 | total loss: [1m[32m0.55326[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.55326 -- iter: 0864/1309
## [A[ATraining Step: 711 | total loss: [1m[32m0.56086[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.56086 -- iter: 0880/1309
## [A[ATraining Step: 712 | total loss: [1m[32m0.53749[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53749 -- iter: 0896/1309
## [A[ATraining Step: 713 | total loss: [1m[32m0.53581[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53581 -- iter: 0912/1309
## [A[ATraining Step: 714 | total loss: [1m[32m0.54089[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.54089 -- iter: 0928/1309
## [A[ATraining Step: 715 | total loss: [1m[32m0.53891[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53891 -- iter: 0944/1309
## [A[ATraining Step: 716 | total loss: [1m[32m0.53494[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53494 -- iter: 0960/1309
## [A[ATraining Step: 717 | total loss: [1m[32m0.52106[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.52106 -- iter: 0976/1309
## [A[ATraining Step: 718 | total loss: [1m[32m0.53275[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.53275 -- iter: 0992/1309
## [A[ATraining Step: 719 | total loss: [1m[32m0.51099[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.51099 -- iter: 1008/1309
## [A[ATraining Step: 720 | total loss: [1m[32m0.49704[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.49704 -- iter: 1024/1309
## [A[ATraining Step: 721 | total loss: [1m[32m0.49086[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.49086 -- iter: 1040/1309
## [A[ATraining Step: 722 | total loss: [1m[32m0.48474[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.48474 -- iter: 1056/1309
## [A[ATraining Step: 723 | total loss: [1m[32m0.49056[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.49056 -- iter: 1072/1309
## [A[ATraining Step: 724 | total loss: [1m[32m0.48636[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.48636 -- iter: 1088/1309
## [A[ATraining Step: 725 | total loss: [1m[32m0.48294[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.48294 -- iter: 1104/1309
## [A[ATraining Step: 726 | total loss: [1m[32m0.46623[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46623 -- iter: 1120/1309
## [A[ATraining Step: 727 | total loss: [1m[32m0.46982[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46982 -- iter: 1136/1309
## [A[ATraining Step: 728 | total loss: [1m[32m0.46565[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46565 -- iter: 1152/1309
## [A[ATraining Step: 729 | total loss: [1m[32m0.45926[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.45926 -- iter: 1168/1309
## [A[ATraining Step: 730 | total loss: [1m[32m0.44633[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.44633 -- iter: 1184/1309
## [A[ATraining Step: 731 | total loss: [1m[32m0.48148[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.48148 -- iter: 1200/1309
## [A[ATraining Step: 732 | total loss: [1m[32m0.47995[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.47995 -- iter: 1216/1309
## [A[ATraining Step: 733 | total loss: [1m[32m0.47528[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.47528 -- iter: 1232/1309
## [A[ATraining Step: 734 | total loss: [1m[32m0.46543[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46543 -- iter: 1248/1309
## [A[ATraining Step: 735 | total loss: [1m[32m0.46429[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46429 -- iter: 1264/1309
## [A[ATraining Step: 736 | total loss: [1m[32m0.47436[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.47436 -- iter: 1280/1309
## [A[ATraining Step: 737 | total loss: [1m[32m0.45810[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.45810 -- iter: 1296/1309
## [A[ATraining Step: 738 | total loss: [1m[32m0.46169[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46169 -- iter: 1309/1309
## [A[ATraining Step: 738 | total loss: [1m[32m0.46169[0m[0m
## [2K
| Adam | epoch: 009 | loss: 0.46169 -- iter: 1309/1309
## --
## Training Step: 739 | total loss: [1m[32m0.44133[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.44133 -- iter: 0016/1309
## [A[ATraining Step: 740 | total loss: [1m[32m0.50094[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.50094 -- iter: 0032/1309
## [A[ATraining Step: 741 | total loss: [1m[32m0.49312[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.49312 -- iter: 0048/1309
## [A[ATraining Step: 742 | total loss: [1m[32m0.56470[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56470 -- iter: 0064/1309
## [A[ATraining Step: 743 | total loss: [1m[32m0.55681[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.55681 -- iter: 0080/1309
## [A[ATraining Step: 744 | total loss: [1m[32m0.55594[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.55594 -- iter: 0096/1309
## [A[ATraining Step: 745 | total loss: [1m[32m0.57815[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.57815 -- iter: 0112/1309
## [A[ATraining Step: 746 | total loss: [1m[32m0.54911[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54911 -- iter: 0128/1309
## [A[ATraining Step: 747 | total loss: [1m[32m0.53880[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53880 -- iter: 0144/1309
## [A[ATraining Step: 748 | total loss: [1m[32m0.52911[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.52911 -- iter: 0160/1309
## [A[ATraining Step: 749 | total loss: [1m[32m0.54085[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54085 -- iter: 0176/1309
## [A[ATraining Step: 750 | total loss: [1m[32m0.52906[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.52906 -- iter: 0192/1309
## [A[ATraining Step: 751 | total loss: [1m[32m0.53248[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53248 -- iter: 0208/1309
## [A[ATraining Step: 752 | total loss: [1m[32m0.51534[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.51534 -- iter: 0224/1309
## [A[ATraining Step: 753 | total loss: [1m[32m0.50973[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.50973 -- iter: 0240/1309
## [A[ATraining Step: 754 | total loss: [1m[32m0.50658[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.50658 -- iter: 0256/1309
## [A[ATraining Step: 755 | total loss: [1m[32m0.54838[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54838 -- iter: 0272/1309
## [A[ATraining Step: 756 | total loss: [1m[32m0.51823[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.51823 -- iter: 0288/1309
## [A[ATraining Step: 757 | total loss: [1m[32m0.52120[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.52120 -- iter: 0304/1309
## [A[ATraining Step: 758 | total loss: [1m[32m0.56750[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56750 -- iter: 0320/1309
## [A[ATraining Step: 759 | total loss: [1m[32m0.54743[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54743 -- iter: 0336/1309
## [A[ATraining Step: 760 | total loss: [1m[32m0.55962[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.55962 -- iter: 0352/1309
## [A[ATraining Step: 761 | total loss: [1m[32m0.53260[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53260 -- iter: 0368/1309
## [A[ATraining Step: 762 | total loss: [1m[32m0.55761[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.55761 -- iter: 0384/1309
## [A[ATraining Step: 763 | total loss: [1m[32m0.55355[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.55355 -- iter: 0400/1309
## [A[ATraining Step: 764 | total loss: [1m[32m0.56473[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56473 -- iter: 0416/1309
## [A[ATraining Step: 765 | total loss: [1m[32m0.54852[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54852 -- iter: 0432/1309
## [A[ATraining Step: 766 | total loss: [1m[32m0.51815[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.51815 -- iter: 0448/1309
## [A[ATraining Step: 767 | total loss: [1m[32m0.53459[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53459 -- iter: 0464/1309
## [A[ATraining Step: 768 | total loss: [1m[32m0.55149[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.55149 -- iter: 0480/1309
## [A[ATraining Step: 769 | total loss: [1m[32m0.54886[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54886 -- iter: 0496/1309
## [A[ATraining Step: 770 | total loss: [1m[32m0.57334[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.57334 -- iter: 0512/1309
## [A[ATraining Step: 771 | total loss: [1m[32m0.56305[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56305 -- iter: 0528/1309
## [A[ATraining Step: 772 | total loss: [1m[32m0.56581[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56581 -- iter: 0544/1309
## [A[ATraining Step: 773 | total loss: [1m[32m0.54776[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54776 -- iter: 0560/1309
## [A[ATraining Step: 774 | total loss: [1m[32m0.57027[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.57027 -- iter: 0576/1309
## [A[ATraining Step: 775 | total loss: [1m[32m0.56468[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56468 -- iter: 0592/1309
## [A[ATraining Step: 776 | total loss: [1m[32m0.56821[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56821 -- iter: 0608/1309
## [A[ATraining Step: 777 | total loss: [1m[32m0.57312[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.57312 -- iter: 0624/1309
## [A[ATraining Step: 778 | total loss: [1m[32m0.57299[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.57299 -- iter: 0640/1309
## [A[ATraining Step: 779 | total loss: [1m[32m0.58302[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.58302 -- iter: 0656/1309
## [A[ATraining Step: 780 | total loss: [1m[32m0.60344[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.60344 -- iter: 0672/1309
## [A[ATraining Step: 781 | total loss: [1m[32m0.58825[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.58825 -- iter: 0688/1309
## [A[ATraining Step: 782 | total loss: [1m[32m0.60025[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.60025 -- iter: 0704/1309
## [A[ATraining Step: 783 | total loss: [1m[32m0.57954[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.57954 -- iter: 0720/1309
## [A[ATraining Step: 784 | total loss: [1m[32m0.58081[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.58081 -- iter: 0736/1309
## [A[ATraining Step: 785 | total loss: [1m[32m0.56436[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56436 -- iter: 0752/1309
## [A[ATraining Step: 786 | total loss: [1m[32m0.55580[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.55580 -- iter: 0768/1309
## [A[ATraining Step: 787 | total loss: [1m[32m0.56632[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.56632 -- iter: 0784/1309
## [A[ATraining Step: 788 | total loss: [1m[32m0.57147[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.57147 -- iter: 0800/1309
## [A[ATraining Step: 789 | total loss: [1m[32m0.54566[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54566 -- iter: 0816/1309
## [A[ATraining Step: 790 | total loss: [1m[32m0.54321[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54321 -- iter: 0832/1309
## [A[ATraining Step: 791 | total loss: [1m[32m0.54763[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54763 -- iter: 0848/1309
## [A[ATraining Step: 792 | total loss: [1m[32m0.54398[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54398 -- iter: 0864/1309
## [A[ATraining Step: 793 | total loss: [1m[32m0.52236[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.52236 -- iter: 0880/1309
## [A[ATraining Step: 794 | total loss: [1m[32m0.53792[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53792 -- iter: 0896/1309
## [A[ATraining Step: 795 | total loss: [1m[32m0.53808[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53808 -- iter: 0912/1309
## [A[ATraining Step: 796 | total loss: [1m[32m0.53747[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53747 -- iter: 0928/1309
## [A[ATraining Step: 797 | total loss: [1m[32m0.52337[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.52337 -- iter: 0944/1309
## [A[ATraining Step: 798 | total loss: [1m[32m0.50844[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.50844 -- iter: 0960/1309
## [A[ATraining Step: 799 | total loss: [1m[32m0.52519[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.52519 -- iter: 0976/1309
## [A[ATraining Step: 800 | total loss: [1m[32m0.53466[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53466 -- iter: 0992/1309
## [A[ATraining Step: 801 | total loss: [1m[32m0.54050[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.54050 -- iter: 1008/1309
## [A[ATraining Step: 802 | total loss: [1m[32m0.53381[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.53381 -- iter: 1024/1309
## [A[ATraining Step: 803 | total loss: [1m[32m0.51315[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.51315 -- iter: 1040/1309
## [A[ATraining Step: 804 | total loss: [1m[32m0.51555[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.51555 -- iter: 1056/1309
## [A[ATraining Step: 805 | total loss: [1m[32m0.49844[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.49844 -- iter: 1072/1309
## [A[ATraining Step: 806 | total loss: [1m[32m0.48862[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.48862 -- iter: 1088/1309
## [A[ATraining Step: 807 | total loss: [1m[32m0.49002[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.49002 -- iter: 1104/1309
## [A[ATraining Step: 808 | total loss: [1m[32m0.48676[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.48676 -- iter: 1120/1309
## [A[ATraining Step: 809 | total loss: [1m[32m0.48852[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.48852 -- iter: 1136/1309
## [A[ATraining Step: 810 | total loss: [1m[32m0.46520[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.46520 -- iter: 1152/1309
## [A[ATraining Step: 811 | total loss: [1m[32m0.49851[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.49851 -- iter: 1168/1309
## [A[ATraining Step: 812 | total loss: [1m[32m0.50055[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.50055 -- iter: 1184/1309
## [A[ATraining Step: 813 | total loss: [1m[32m0.50702[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.50702 -- iter: 1200/1309
## [A[ATraining Step: 814 | total loss: [1m[32m0.49447[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.49447 -- iter: 1216/1309
## [A[ATraining Step: 815 | total loss: [1m[32m0.50918[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.50918 -- iter: 1232/1309
## [A[ATraining Step: 816 | total loss: [1m[32m0.51872[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.51872 -- iter: 1248/1309
## [A[ATraining Step: 817 | total loss: [1m[32m0.49703[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.49703 -- iter: 1264/1309
## [A[ATraining Step: 818 | total loss: [1m[32m0.47474[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.47474 -- iter: 1280/1309
## [A[ATraining Step: 819 | total loss: [1m[32m0.47872[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.47872 -- iter: 1296/1309
## [A[ATraining Step: 820 | total loss: [1m[32m0.46454[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.46454 -- iter: 1309/1309
## [A[ATraining Step: 820 | total loss: [1m[32m0.46454[0m[0m
## [2K
| Adam | epoch: 010 | loss: 0.46454 -- iter: 1309/1309
## --
## DiCaprio Surviving Rate: 0.0970936119556
## Winslet Surviving Rate: 0.938064098358
This was run in a local R session to start up this RStudio instance with the right libraries installed.
Use the latest version of googleComputeEngineR from github if you want to use get_dockerfolder("cloudDataLabR")
library(googleComputeEngineR)
## make an RStudio instance to base upon
vm <- gce_vm(template = "rstudio",
name = "r-datalab-build",
username = "mark", password = "mark1234",
predefined_type = "n1-standard-1")
## once RStudio loaded at the IP, build the Dockerfile below on instance
## this takes a while
docker_build(vm, dockerfolder = get_dockerfolder("cloudDataLabR"), new_image = "r-datalab")
## send to the Container Registry
gce_push_registry(vm, save_name = "datalab-r-image", image_name = "r-datalab")
## Can now launch instances using this image via:
vm2 <- gce_vm(template = "rstudio",
name = "r-datalab",
predefined_type = "n1-standard-1",
dynamic_image = gce_tag_container("datalab-r"),
username = "mark", password = "mark1234")
The Dockerfile used is below:
FROM rocker/hadleyverse
MAINTAINER Mark Edmondson (r@sunholo.com)
# install cron and nano and tensorflow and tflearn
RUN apt-get update && apt-get install -y \
cron nano \
python-pip python-dev libhdf5-dev \
&& pip install cython \
&& pip install numpy \
&& pip install pandas \
&& export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl \
&& pip install --upgrade $TF_BINARY_URL \
&& pip install git+https://github.com/tflearn/tflearn.git \
&& pip install feather-format \
&& pip install h5py \
## clean up
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/ \
&& rm -rf /tmp/downloaded_packages/ /tmp/*.rds
## Install packages from CRAN
RUN install2.r --error \
-r 'http://cran.rstudio.com' \
googleAuthR googleAnalyticsR searchConsoleR googleCloudStorageR bigQueryR htmlwidgets feather rPython \
## install Github packages
&& Rscript -e "devtools::install_github(c('MarkEdmondson1234/youtubeAnalyticsR', 'MarkEdmondson1234/googleID', 'MarkEdmondson1234/googleAuthR'))" \
&& Rscript -e "devtools::install_github(c('bnosac/cronR'))" \
&& Rscript -e "devtools::install_github(c('rstudio/tensorflow'))" \
## clean up
&& rm -rf /tmp/downloaded_packages/ /tmp/*.rds \