Model Syntax

Group 1 = Treatment

Group 0 = Control

See this link: http://lavaan.ugent.be/tutorial/growth.html

### Model

# Education Models

    LG.mod.ed <- '
              int=~1*ALAQSUM+1*CLAQSUM+1*DLAQSUM
              slope=~0*ALAQSUM+1*CLAQSUM+2*DLAQSUM
              #intercept~AAUDITTot.log
              #slope~AAUDITTot.log
              ED.binary~int+slope
              '
     
    fit.ed <- growth(LG.mod.ed, data=A1.tm, missing="ml")
    sum1 <- summary(fit.ed, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-22) converged normally after 341 iterations
## 
##                                                   Used       Total
##   Number of observations                          1152        1169
## 
##   Number of missing patterns                         6
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.120
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.989
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              876.132
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.007
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10478.902
##   Loglikelihood unrestricted model (H1)     -10478.842
## 
##   Number of free parameters                         11
##   Akaike (AIC)                               20979.803
##   Bayesian (BIC)                             21035.345
##   Sample-size adjusted Bayesian (BIC)        21000.405
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.003
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               8.163    0.927
##     CLAQSUM           1.000                               8.163    0.817
##     DLAQSUM           1.000                               8.163    0.921
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               3.571    0.357
##     DLAQSUM           2.000                               7.141    0.806
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ED.binary ~                                                           
##     int               0.016    0.000   51.756    0.000    0.135    0.360
##     slope             0.045    0.006    7.188    0.000    0.160    0.427
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~~                                                                
##     slope           -13.868    2.675   -5.185    0.000   -0.476   -0.476
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##    .ED.binary         0.000                               0.000    0.000
##     int              55.823    0.259  215.756    0.000    6.838    6.838
##     slope            -1.984    0.146  -13.605    0.000   -0.556   -0.556
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          10.896    4.399    2.477    0.013   10.896    0.141
##    .CLAQSUM          48.195    2.931   16.446    0.000   48.195    0.483
##    .DLAQSUM          16.356    4.149    3.942    0.000   16.356    0.208
##    .ED.binary         0.116    0.006   18.402    0.000    0.116    0.834
##     int              66.637    5.191   12.837    0.000    1.000    1.000
##     slope            12.749    2.102    6.066    0.000    1.000    1.000
    LG.mod.ed.ss <- '
              int=~1*ALAQSUM+1*CLAQSUM+1*DLAQSUM
              slope=~0*ALAQSUM+1*CLAQSUM+2*DLAQSUM
              #int~AAUDITTot.log
              #slope~AAUDITTot.log
              '
    fit.ed.ss <- growth(LG.mod.ed.ss, data=A1.tm, missing="ml",group="ED.binary")
    summary(fit.ed.ss, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-22) converged normally after 192 iterations
## 
##   Number of observations per group         
##   1                                                702
##   0                                                141
## 
##   Number of missing patterns per group     
##   1                                                  4
##   0                                                  2
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.301
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.860
## 
## Chi-square for each group:
## 
##   1                                              0.021
##   0                                              0.280
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              684.460
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.008
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -8569.230
##   Loglikelihood unrestricted model (H1)      -8569.079
## 
##   Number of free parameters                         16
##   Akaike (AIC)                               17170.459
##   Bayesian (BIC)                             17246.251
##   Sample-size adjusted Bayesian (BIC)        17195.440
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.051
##   P-value RMSEA <= 0.05                          0.947
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.003
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               7.989    0.929
##     CLAQSUM           1.000                               7.989    0.848
##     DLAQSUM           1.000                               7.989    0.957
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               3.356    0.356
##     DLAQSUM           2.000                               6.711    0.804
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~~                                                                
##     slope           -14.579    2.886   -5.052    0.000   -0.544   -0.544
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##     int              56.496    0.323  174.694    0.000    7.072    7.072
##     slope            -1.612    0.163   -9.909    0.000   -0.480   -0.480
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          10.084    4.740    2.127    0.033   10.084    0.136
##    .CLAQSUM          42.738    3.054   13.994    0.000   42.738    0.482
##    .DLAQSUM          19.135    4.620    4.142    0.000   19.135    0.275
##     int              63.822    5.812   10.980    0.000    1.000    1.000
##     slope            11.260    2.249    5.006    0.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               8.089    0.888
##     CLAQSUM           1.000                               8.089    0.801
##     DLAQSUM           1.000                               8.089    1.031
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               3.255    0.323
##     DLAQSUM           2.000                               6.510    0.830
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~~                                                                
##     slope           -15.493    7.403   -2.093    0.036   -0.588   -0.588
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##     int              53.138    0.763   69.615    0.000    6.569    6.569
##     slope            -4.034    0.367  -11.001    0.000   -1.239   -1.239
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          17.611   13.125    1.342    0.180   17.611    0.212
##    .CLAQSUM          56.827    8.771    6.479    0.000   56.827    0.558
##    .DLAQSUM          15.708   11.199    1.403    0.161   15.708    0.255
##     int              65.440   15.117    4.329    0.000    1.000    1.000
##     slope            10.597    5.687    1.863    0.062    1.000    1.000
# Treatment Models

    LG.mod.tx <- '
              int=~1*ALAQSUM+1*CLAQSUM+1*DLAQSUM
              slope=~0*ALAQSUM+1*CLAQSUM+2*DLAQSUM
              #intercept~AAUDITTot.log
              #slope~AAUDITTot.log
              rndcode.binary~int+slope
              '
     
    fit.tx <- growth(LG.mod.tx, data=A1.tm, missing="ml")
    summary(fit.tx, fit.measures=TRUE, standardized=TRUE,modindices=TRUE)
## lavaan (0.5-22) converged normally after 196 iterations
## 
##   Number of observations                          1169
## 
##   Number of missing patterns                         5
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.821
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.845
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              770.499
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.006
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10930.684
##   Loglikelihood unrestricted model (H1)     -10930.274
## 
##   Number of free parameters                         11
##   Akaike (AIC)                               21883.368
##   Bayesian (BIC)                             21939.071
##   Sample-size adjusted Bayesian (BIC)        21904.131
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.028
##   P-value RMSEA <= 0.05                          0.996
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.008
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               8.121    0.922
##     CLAQSUM           1.000                               8.121    0.815
##     DLAQSUM           1.000                               8.121    0.915
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               3.518    0.353
##     DLAQSUM           2.000                               7.036    0.793
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   rndcode.binary ~                                                      
##     int               0.006    0.000   17.633    0.000    0.046    0.100
##     slope             0.002    0.006    0.345    0.730    0.007    0.015
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~~                                                                
##     slope           -13.471    2.687   -5.014    0.000   -0.472   -0.472
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##    .rndcode.binary    0.000                               0.000    0.000
##     int              55.817    0.259  215.796    0.000    6.874    6.874
##     slope            -1.988    0.146  -13.624    0.000   -0.565   -0.565
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          11.602    4.412    2.630    0.009   11.602    0.150
##    .CLAQSUM          47.848    2.947   16.235    0.000   47.848    0.482
##    .DLAQSUM          17.155    4.623    3.711    0.000   17.155    0.218
##    .rndcode.binary    0.215    0.009   24.146    0.000    0.215    0.991
##     int              65.943    5.177   12.737    0.000    1.000    1.000
##     slope            12.376    2.183    5.669    0.000    1.000    1.000
## 
## Modification Indices:
## 
##               lhs op            rhs      mi     epc sepc.lv sepc.all
## 1             int =~        ALAQSUM   0.028  -0.001  -0.012   -0.001
## 2             int =~        CLAQSUM   0.045   0.001   0.008    0.001
## 3             int =~        DLAQSUM   0.032  -0.002  -0.013   -0.001
## 4           slope =~        ALAQSUM   0.025   0.039   0.138    0.016
## 5           slope =~        CLAQSUM   0.064  -0.032  -0.111   -0.011
## 6           slope =~        DLAQSUM   0.056   0.059   0.208    0.023
## 16        ALAQSUM ~1                  0.025  -0.079  -0.079   -0.009
## 17        CLAQSUM ~1                  0.039   0.049   0.049    0.005
## 18        DLAQSUM ~1                  0.027  -0.081  -0.081   -0.009
## 19 rndcode.binary ~1                544.289   0.317   0.317    0.679
## 22            int =~ rndcode.binary 549.401   0.006   0.046    0.098
## 23          slope =~ rndcode.binary 237.081  -0.065  -0.229   -0.491
## 24        ALAQSUM ~~        CLAQSUM   0.657  16.542  16.542    0.189
## 25        ALAQSUM ~~        DLAQSUM   1.313 -43.392 -43.392   -0.555
## 26        ALAQSUM ~~ rndcode.binary   2.075   0.141   0.141    0.034
## 27        CLAQSUM ~~        DLAQSUM   1.184 142.794 142.794    1.616
## 28        CLAQSUM ~~ rndcode.binary   0.782   0.101   0.101    0.022
## 29        DLAQSUM ~~ rndcode.binary   0.037  -0.022  -0.022   -0.005
## 30            int  ~ rndcode.binary   4.976   1.110   0.137    0.064
## 31            int  ~          slope   9.830 -22.114  -9.580   -9.580
## 32          slope  ~ rndcode.binary   0.070   0.074   0.021    0.010
## 33          slope  ~            int   2.970   0.423   0.977    0.977
##    sepc.nox
## 1    -0.001
## 2     0.001
## 3    -0.001
## 4     0.016
## 5    -0.011
## 6     0.023
## 16   -0.009
## 17    0.005
## 18   -0.009
## 19    0.679
## 22    0.098
## 23   -0.491
## 24    0.189
## 25   -0.555
## 26    0.034
## 27    1.616
## 28    0.022
## 29   -0.005
## 30    0.064
## 31   -9.580
## 32    0.010
## 33    0.977
    a <- parTable(fit.tx)[c(7:8,20:21),c("est","se")]
    write.excel(a)
    
    
    LG.mod.tx.ss <- '
              int=~1*ALAQSUM+1*CLAQSUM+1*DLAQSUM
              slope=~0*ALAQSUM+1*CLAQSUM+2*DLAQSUM
              #intercept~AAUDITTot.log
              #slope~AAUDITTot.log
              '
    fit.tx.ss <- growth(LG.mod.tx.ss, data=A1.tm, missing="ml",group="rndcode.binary")
    summary(fit.tx.ss, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-22) converged normally after 196 iterations
## 
##   Number of observations per group         
##   1                                                370
##   0                                                782
## 
##   Number of missing patterns per group     
##   1                                                  4
##   0                                                  4
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.291
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.865
## 
## Chi-square for each group:
## 
##   1                                              0.263
##   0                                              0.028
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              764.818
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.007
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10164.497
##   Loglikelihood unrestricted model (H1)     -10164.352
## 
##   Number of free parameters                         16
##   Akaike (AIC)                               20360.995
##   Bayesian (BIC)                             20441.783
##   Sample-size adjusted Bayesian (BIC)        20390.962
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.043
##   P-value RMSEA <= 0.05                          0.965
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.003
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               7.727    0.895
##     CLAQSUM           1.000                               7.727    0.801
##     DLAQSUM           1.000                               7.727    0.918
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               2.932    0.304
##     DLAQSUM           2.000                               5.865    0.696
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~~                                                                
##     slope           -11.656    4.617   -2.524    0.012   -0.514   -0.514
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##     int              56.704    0.447  126.902    0.000    7.339    7.339
##     slope            -2.163    0.245   -8.822    0.000   -0.737   -0.737
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          14.899    7.615    1.956    0.050   14.899    0.200
##    .CLAQSUM          48.027    5.114    9.391    0.000   48.027    0.516
##    .DLAQSUM          23.436    8.169    2.869    0.004   23.436    0.330
##     int              59.703    8.721    6.846    0.000    1.000    1.000
##     slope             8.599    3.817    2.253    0.024    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int =~                                                                
##     ALAQSUM           1.000                               8.299    0.937
##     CLAQSUM           1.000                               8.299    0.821
##     DLAQSUM           1.000                               8.299    0.915
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               3.777    0.373
##     DLAQSUM           2.000                               7.555    0.833
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   int ~~                                                                
##     slope           -14.425    3.315   -4.351    0.000   -0.460   -0.460
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##     int              55.410    0.316  175.331    0.000    6.676    6.676
##     slope            -1.904    0.181  -10.519    0.000   -0.504   -0.504
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           9.543    5.448    1.752    0.080    9.543    0.122
##    .CLAQSUM          47.984    3.634   13.205    0.000   47.984    0.469
##    .DLAQSUM          14.094    5.659    2.491    0.013   14.094    0.171
##     int              68.879    6.448   10.682    0.000    1.000    1.000
##     slope            14.268    2.687    5.310    0.000    1.000    1.000
##       est    se
## 20 55.823 0.259
## 21 -1.984 0.146