Escala de Percepção Social do Uso de Drogas

Este relatório objetiva apresentar as análises introdutória do instrumento ``Escala de percepção social do uso de drogas’’, que está em fase de desenvolvimento pelo Centro de Referência em Pesquisa, Intervenção e Avaliação em Álcool e Outras Drogas (http://www.ufjf.br/crepeia/).

O instrumento está sendo validado para população de educadores. O objetivo da pesquisa é oferecer uma medida confiável para avaliação da percepção social de educadores de um curso à distância oferecido pela Secretaria Nacional de Políticas sobre Drogas para aproximadamente 10.000 educadores dos estados de Minas Gerais e Rio de Janeiro.

Durante todo o processo de desenvolvimento, foram utilizadas ferramentas de código-aberto, para facilitar o re-uso das técnicas e procedimentos desenvolvidos. Todo conteúdo do instrumento e de suas etapas estará disponível para o público no repositório (http://github.com/crepeia/ead-senad). Atualmente, o projeto está hospedado no repositório (http://github.com/henriquepgomide/ead-senad).

Neste relatório são apresentadas, análises da escala com base em uma amostra de 2771 educadores-tutores do curso. As análises foram conduzidas através da linguagem de programação R usando os pacotes car, psych e mirt.

Banco de Dados

O banco de dados da pesquisa, pode ser obtido no seguinte endereço: (https://github.com/crepeia/ead-senad/blob/master/percepcaosocial_df.csv).

Resultados

Os resultados são apresentados por tópicos: caracterização da amostra, avaliação descritiva da escala e análise fatorial exploratória.

Bibliotecas

library(car) # Function Recode
library(psych) # Function Describe
## 
## Attaching package: 'psych'
## 
## The following object is masked from 'package:car':
## 
##     logit
library(mirt) # CFA
## Loading required package: stats4
## Loading required package: lattice
socialPer  <- read.csv("percepcaosocial_df.csv")
## Summing scales to remove NA's
socialPer$scaleSum  <- rowSums(socialPer[,34:71])
## Subset completed observations and consented participation
socialPer  <- subset(socialPer, subset=socialPer$termo=="Sim" & socialPer$estado=="Finalizadas" & !is.na(socialPer$scaleSum))

Sócio-demográficas

Idade

socialPer$idade  <- as.numeric(as.character(socialPer$idade))
## Warning: NAs introduzidos por coerção
socialPer$idade[socialPer$idade < 18 | socialPer$idade > 68 ]  <- NA
summary(socialPer$idade) # all
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    18.0    34.0    40.0    40.6    47.0    68.0     284
by(socialPer$idade, socialPer$sexo, describe) #by sex
## socialPer$sexo: Feminino
##   vars    n  mean   sd median trimmed   mad min max range skew kurtosis
## 1    1 2122 40.74 8.68     41   40.65 10.38  20  68    48 0.08    -0.67
##     se
## 1 0.19
## -------------------------------------------------------- 
## socialPer$sexo: Masculino
##   vars   n  mean   sd median trimmed   mad min max range skew kurtosis
## 1    1 361 39.86 9.73     39   39.38 10.38  18  67    49 0.39    -0.44
##     se
## 1 0.51

Sexo

cbind(round(prop.table(sort(table(socialPer$sexo), decreasing = TRUE)),2))
##           [,1]
## Feminino  0.86
## Masculino 0.14

Escolaridade

cbind(round(prop.table(sort(table(socialPer$escolaridade), decreasing = TRUE)),2))
##                               [,1]
## Pós-graduação                 0.64
## Ensino Superior Completo      0.29
## Ensino Superior Incompleto    0.05
## Ensino Médio Completo         0.01
## Ensino Fundamental Completo   0.00
## Ensino Médio Incompleto       0.00
## Ensino Fundamental Incompleto 0.00

Estado Civil

cbind(round(prop.table(sort(table(socialPer$estadocivil), decreasing = TRUE)),2))
##                [,1]
## Casado (a)     0.59
## Solteiro (a)   0.21
## Divorciado (a) 0.09
## União Estável  0.08
## Viúvo (a)      0.02
## Outros         0.01

Tempo de serviço

timeWorking  <- as.numeric(as.character(socialPer$tempodeservico))
## Warning: NAs introduzidos por coerção
timeWorking[timeWorking > 59]  <- NA
summary(timeWorking)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##     0.0     5.0    12.0    12.9    20.0    59.0     545

Religião

cbind(round(prop.table(sort(table(socialPer$religiao), decreasing = TRUE)),2))
##              [,1]
## Católica     0.66
## Evangélica   0.19
## Espírita     0.08
## Sem religião 0.04
## Outras       0.02
## Umbanda      0.00
## Budismo      0.00
## Candomblé    0.00

Contato com o tema

cbind(round(prop.table(sort(table(socialPer$contatoanterior), decreasing = TRUE)),2))
##     [,1]
## Sim 0.62
## Não 0.38

Lida com

cbind(round(prop.table(sort(table(socialPer$lidadiretamente), decreasing = TRUE)),2))
##     [,1]
## Sim 0.64
## Não 0.36

Onde lida com

cbind(round(prop.table(sort(table(socialPer$lida.onde), decreasing = TRUE)),2))
##                     [,1]
## Escola              0.34
## Família             0.23
## Comunidade          0.20
## Outros              0.11
## Amigos              0.06
## Serviços de atuação 0.03
## Serviços de saúde   0.02

Apresentação dos itens da escala

questions  <- read.csv("percepcaosocial_questions.csv", col.names = "Itens", header=TRUE)
print(as.character(questions[1:39,1]), type="html", justify = "left" )
##  [1] "Usuários de drogas não têm força de vontade."                                                                     
##  [2] "Usuários de drogas têm menor destaque na sociedade."                                                              
##  [3] "Usuários de drogas não podem ocupar cargos que exigem maior responsabilidade."                                    
##  [4] "O uso de drogas representa uma fraqueza de caráter."                                                              
##  [5] "Usuários de drogas não se preocupam com si mesmos."                                                               
##  [6] "Usuários de drogas são pessoas moralmente fracas."                                                                
##  [7] "Usuários de drogas são pessoas sem determinação."                                                                 
##  [8] "Usuários de drogas não querem parar de usá-las."                                                                  
##  [9] "Usuários de drogas raramente prejudicam alguém a não ser a si próprios."                                          
## [10] "A maioria dos usuários de drogas está desempregada."                                                              
## [11] "O tratamento raramente ajuda o usuário de drogas."                                                                
## [12] "Não se deve ter grandes expectativas na relação com os usuários de drogas."                                       
## [13] "Quem abusa de drogas pode aprender a diminuir o uso, tendo-o sob controle novamente."                             
## [14] "Usuários de drogas podem ser ajudados antes de chegarem ao “fundo do poço”."                                      
## [15] "As principais causas do uso de drogas é a falta de disciplina e autocontrole."                                    
## [16] "A melhor forma de controlar os usuários de drogas é mantê-los isolados."                                          
## [17] "Existem características que diferenciam os usuários de drogas das pessoas normais."                               
## [18] "Uma pessoa deve ser hospitalizada assim que apresentar sinais de uso de drogas."                                  
## [19] "A dependência de drogas é uma doença ."                                                                           
## [20] "Os usuários de drogas são pessoas indesejáveis na sociedade."                                                     
## [21] "A sociedade não deveria se preocupar em proteger-se dos usuários de drogas."                                      
## [22] "Os usuários de drogas são responsáveis pelos problemas associados ao uso de drogas."                              
## [23] "Os usuários de drogas devem ser isolados da sociedade."                                                           
## [24] "Uma pessoa seria ingênua em se casar com alguém que tenha sido usuário de drogas, mesmo que estivesse recuperado."
## [25] "As pessoas não gostariam de morar próximo a alguém que tenha sido usuário de drogas."                             
## [26] "Alguém que tenha um histórico de uso de drogas deve ser impedido de assumir qualquer cargo público."              
## [27] "Os usuários de drogas devem ser privados de seus direitos individuais."                                           
## [28] "Usuários de drogas devem ser encorajados a assumir sua responsabilidade por suas atividades diárias."             
## [29] "Ninguém tem o direito de excluir os usuários de drogas de sua vizinhança."                                        
## [30] "Os usuários de drogas oferecem mais perigo do que as pessoas imaginam."                                           
## [31] "Os usuários de drogas ainda são ridicularizados."                                                                 
## [32] "Devem ser gastos mais recursos públicos financeiros no tratamento dos usuários de drogas."                        
## [33] "A sociedade precisa ser mais tolerante com os usuários de drogas."                                                
## [34] "A sociedade tem a responsabilidade de fornecer o melhor tratamento possível aos usuários de drogas."              
## [35] "Os usuários de drogas merecem nossa simpatia."                                                                    
## [36] "Os usuários de drogas são um peso para a sociedade."                                                              
## [37] "Aumentar o investimento nas políticas de drogas é um desperdício de dinheiro público."                            
## [38] "O numero de serviços de tratamento é suficiente para o número de usuários de drogas ."                            
## [39] "É melhor evitar alguém que tenha problemas com drogas."

Itens

fullScale  <- socialPer[,34:71]
describe(fullScale, skew=FALSE)
##       vars    n mean   sd median trimmed  mad min max range   se
## ps001    1 2771 2.26 0.81      2    2.22 0.00   1   5     4 0.02
## ps002    2 2771 3.07 1.02      3    3.09 1.48   1   5     4 0.02
## ps003    3 2771 2.95 0.95      3    2.95 1.48   1   5     4 0.02
## ps004    4 2771 2.27 0.86      2    2.20 0.00   1   5     4 0.02
## ps005    5 2771 2.72 0.98      2    2.70 1.48   1   5     4 0.02
## ps006    6 2771 2.47 0.91      2    2.45 1.48   1   5     4 0.02
## ps007    7 2771 2.49 0.87      2    2.46 1.48   1   5     4 0.02
## ps008    8 2771 2.24 0.76      2    2.22 0.00   1   5     4 0.01
## ps009    9 2771 2.02 0.89      2    1.90 0.00   1   5     4 0.02
## ps010   10 2771 2.83 0.94      3    2.80 1.48   1   5     4 0.02
## ps011   11 2771 2.07 0.78      2    1.99 0.00   1   5     4 0.01
## ps012   12 2771 2.09 0.75      2    2.04 0.00   1   5     4 0.01
## ps013   13 2771 2.84 1.10      3    2.88 1.48   1   5     4 0.02
## ps014   14 2771 4.33 0.60      4    4.35 0.00   1   5     4 0.01
## ps015   15 2771 2.76 0.97      3    2.75 1.48   1   5     4 0.02
## ps016   16 2771 1.83 0.66      2    1.76 0.00   1   5     4 0.01
## ps017   17 2771 3.18 0.99      3    3.24 1.48   1   5     4 0.02
## ps018   18 2771 2.46 0.84      2    2.40 0.00   1   5     4 0.02
## ps019   19 2771 3.93 0.86      4    4.04 0.00   1   5     4 0.02
## ps020   20 2771 2.81 0.99      3    2.83 1.48   1   5     4 0.02
## ps021   21 2771 1.98 0.82      2    1.90 0.00   1   5     4 0.02
## ps022   22 2771 3.04 0.95      3    3.06 1.48   1   5     4 0.02
## ps023   23 2771 1.81 0.64      2    1.75 0.00   1   5     4 0.01
## ps024   24 2771 1.95 0.70      2    1.90 0.00   1   5     4 0.01
## ps025   25 2771 2.55 0.97      2    2.55 1.48   1   5     4 0.02
## ps026   26 2771 2.00 0.72      2    1.95 0.00   1   5     4 0.01
## ps027   27 2771 1.74 0.64      2    1.69 0.00   1   5     4 0.01
## ps028   28 2771 4.18 0.64      4    4.22 0.00   1   5     4 0.01
## ps029   29 2771 4.07 0.70      4    4.13 0.00   1   5     4 0.01
## ps030   30 2771 2.69 0.85      3    2.67 1.48   1   5     4 0.02
## ps031   31 2771 3.65 0.76      4    3.73 0.00   1   5     4 0.01
## ps033   32 2771 3.31 0.88      3    3.34 1.48   1   5     4 0.02
## ps034   33 2771 3.60 0.93      4    3.64 1.48   1   5     4 0.02
## ps035   34 2771 3.54 0.81      4    3.57 1.48   1   5     4 0.02
## ps036   35 2771 2.63 0.92      3    2.62 1.48   1   5     4 0.02
## ps037   36 2771 1.75 0.70      2    1.66 0.00   1   5     4 0.01
## ps038   37 2771 1.75 0.77      2    1.63 0.00   1   5     4 0.01
## ps039   38 2771 2.39 0.97      2    2.30 0.00   1   5     4 0.02

Crobach’s alfa

alpha(fullScale)
## Warning: Some items were negatively correlated with total scale and were
## automatically reversed.
## 
## Reliability analysis   
## Call: alpha(x = fullScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd
##       0.87      0.87    0.89      0.15 6.9 0.0044  2.4 0.35
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.87 0.87 
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se
## ps001       0.86      0.87    0.89      0.15 6.6   0.0045
## ps002       0.87      0.87    0.89      0.16 6.9   0.0044
## ps003       0.86      0.87    0.89      0.15 6.6   0.0045
## ps004       0.86      0.87    0.89      0.15 6.5   0.0046
## ps005       0.86      0.87    0.89      0.15 6.5   0.0046
## ps006       0.86      0.87    0.88      0.15 6.5   0.0046
## ps007       0.86      0.87    0.88      0.15 6.5   0.0046
## ps008       0.86      0.87    0.89      0.15 6.5   0.0045
## ps009       0.87      0.87    0.89      0.16 7.0   0.0043
## ps010       0.86      0.87    0.89      0.16 6.8   0.0044
## ps011       0.86      0.87    0.89      0.15 6.7   0.0045
## ps012       0.86      0.87    0.89      0.15 6.5   0.0046
## ps013-      0.87      0.88    0.89      0.16 7.1   0.0042
## ps014-      0.86      0.87    0.89      0.16 6.8   0.0044
## ps015       0.86      0.87    0.89      0.15 6.8   0.0044
## ps016       0.86      0.87    0.89      0.15 6.6   0.0045
## ps017       0.86      0.87    0.89      0.16 6.8   0.0044
## ps018       0.86      0.87    0.89      0.15 6.8   0.0044
## ps019-      0.87      0.88    0.89      0.16 7.1   0.0043
## ps020       0.86      0.87    0.89      0.15 6.7   0.0045
## ps021       0.87      0.87    0.89      0.16 6.9   0.0044
## ps022       0.86      0.87    0.89      0.15 6.7   0.0045
## ps023       0.86      0.87    0.88      0.15 6.5   0.0046
## ps024       0.86      0.87    0.89      0.15 6.5   0.0045
## ps025       0.86      0.87    0.89      0.16 6.8   0.0044
## ps026       0.86      0.87    0.89      0.15 6.5   0.0046
## ps027       0.86      0.87    0.89      0.15 6.5   0.0045
## ps028-      0.86      0.87    0.89      0.16 6.8   0.0044
## ps029-      0.86      0.87    0.89      0.15 6.7   0.0045
## ps030       0.86      0.87    0.89      0.15 6.6   0.0046
## ps031-      0.87      0.87    0.89      0.16 7.0   0.0044
## ps033-      0.86      0.87    0.89      0.15 6.7   0.0045
## ps034-      0.86      0.87    0.89      0.15 6.8   0.0044
## ps035-      0.86      0.87    0.89      0.15 6.7   0.0045
## ps036       0.86      0.87    0.89      0.15 6.6   0.0046
## ps037       0.86      0.87    0.89      0.15 6.6   0.0045
## ps038       0.86      0.87    0.89      0.15 6.8   0.0044
## ps039       0.86      0.87    0.89      0.15 6.7   0.0045
## 
##  Item statistics 
##           n     r r.cor  r.drop mean   sd
## ps001  2771 0.503 0.487  0.4618  2.3 0.81
## ps002  2771 0.282 0.246  0.2411  3.1 1.02
## ps003  2771 0.471 0.452  0.4374  2.9 0.95
## ps004  2771 0.568 0.563  0.5302  2.3 0.86
## ps005  2771 0.543 0.538  0.5129  2.7 0.98
## ps006  2771 0.594 0.599  0.5665  2.5 0.91
## ps007  2771 0.595 0.599  0.5694  2.5 0.87
## ps008  2771 0.549 0.537  0.5054  2.2 0.76
## ps009  2771 0.200 0.155  0.1275  2.0 0.89
## ps010  2771 0.301 0.266  0.2611  2.8 0.94
## ps011  2771 0.413 0.384  0.3503  2.1 0.78
## ps012  2771 0.575 0.564  0.5286  2.1 0.75
## ps013- 2771 0.061 0.003 -0.0011  3.2 1.10
## ps014- 2771 0.310 0.274  0.2307  1.7 0.60
## ps015  2771 0.363 0.333  0.3152  2.8 0.97
## ps016  2771 0.526 0.514  0.4597  1.8 0.66
## ps017  2771 0.341 0.307  0.2988  3.2 0.99
## ps018  2771 0.365 0.330  0.3056  2.5 0.84
## ps019- 2771 0.123 0.071  0.0394  2.1 0.86
## ps020  2771 0.442 0.421  0.4049  2.8 0.99
## ps021  2771 0.232 0.186  0.1578  2.0 0.82
## ps022  2771 0.382 0.350  0.3356  3.0 0.95
## ps023  2771 0.614 0.614  0.5544  1.8 0.64
## ps024  2771 0.570 0.562  0.5129  1.9 0.70
## ps025  2771 0.334 0.304  0.2773  2.6 0.97
## ps026  2771 0.584 0.576  0.5288  2.0 0.72
## ps027  2771 0.582 0.576  0.5168  1.7 0.64
## ps028- 2771 0.336 0.304  0.2578  1.8 0.64
## ps029- 2771 0.456 0.436  0.3847  1.9 0.70
## ps030  2771 0.532 0.518  0.4922  2.7 0.85
## ps031- 2771 0.207 0.161  0.1311  2.3 0.76
## ps033- 2771 0.390 0.367  0.3286  2.7 0.88
## ps034- 2771 0.374 0.343  0.3119  2.4 0.93
## ps035- 2771 0.390 0.366  0.3296  2.5 0.81
## ps036  2771 0.521 0.508  0.4824  2.6 0.92
## ps037  2771 0.496 0.480  0.4256  1.8 0.70
## ps038  2771 0.353 0.320  0.2784  1.7 0.77
## ps039  2771 0.447 0.422  0.3904  2.4 0.97
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## ps001 0.14 0.54 0.25 0.07 0.01    0
## ps002 0.04 0.30 0.24 0.37 0.05    0
## ps003 0.04 0.32 0.32 0.29 0.03    0
## ps004 0.15 0.54 0.21 0.09 0.01    0
## ps005 0.07 0.43 0.24 0.24 0.02    0
## ps006 0.10 0.50 0.23 0.15 0.01    0
## ps007 0.09 0.50 0.27 0.14 0.01    0
## ps008 0.12 0.58 0.24 0.05 0.01    0
## ps009 0.27 0.55 0.09 0.08 0.01    0
## ps010 0.03 0.41 0.27 0.26 0.02    0
## ps011 0.19 0.63 0.11 0.06 0.01    0
## ps012 0.17 0.63 0.14 0.06 0.00    0
## ps013 0.12 0.32 0.21 0.33 0.03    0
## ps014 0.01 0.01 0.02 0.59 0.38    0
## ps015 0.07 0.40 0.27 0.24 0.02    0
## ps016 0.29 0.60 0.09 0.01 0.00    0
## ps017 0.05 0.24 0.24 0.44 0.04    0
## ps018 0.07 0.55 0.24 0.13 0.01    0
## ps019 0.01 0.07 0.11 0.57 0.23    0
## ps020 0.08 0.35 0.28 0.28 0.02    0
## ps021 0.28 0.51 0.15 0.05 0.01    0
## ps022 0.04 0.27 0.32 0.34 0.03    0
## ps023 0.30 0.60 0.08 0.01 0.00    0
## ps024 0.24 0.59 0.14 0.02 0.00    0
## ps025 0.12 0.43 0.25 0.19 0.01    0
## ps026 0.21 0.61 0.13 0.03 0.00    0
## ps027 0.35 0.57 0.06 0.01 0.00    0
## ps028 0.01 0.01 0.05 0.66 0.28    0
## ps029 0.01 0.02 0.11 0.61 0.25    0
## ps030 0.06 0.38 0.40 0.16 0.01    0
## ps031 0.01 0.09 0.23 0.61 0.07    0
## ps033 0.02 0.16 0.37 0.39 0.06    0
## ps034 0.02 0.12 0.25 0.47 0.14    0
## ps035 0.01 0.08 0.35 0.47 0.09    0
## ps036 0.09 0.40 0.33 0.17 0.01    0
## ps037 0.37 0.53 0.08 0.02 0.00    0
## ps038 0.40 0.50 0.06 0.03 0.01    0
## ps039 0.14 0.51 0.23 0.08 0.04    0

Análise Fatorial

KMO - Adequação da amostra

KMO(fullScale)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = fullScale)
## Overall MSA =  0.92
## MSA for each item = 
## ps001 ps002 ps003 ps004 ps005 ps006 ps007 ps008 ps009 ps010 ps011 ps012 
##  0.95  0.87  0.93  0.94  0.95  0.92  0.92  0.95  0.81  0.89  0.92  0.95 
## ps013 ps014 ps015 ps016 ps017 ps018 ps019 ps020 ps021 ps022 ps023 ps024 
##  0.64  0.91  0.93  0.91  0.93  0.94  0.83  0.91  0.84  0.93  0.92  0.94 
## ps025 ps026 ps027 ps028 ps029 ps030 ps031 ps033 ps034 ps035 ps036 ps037 
##  0.84  0.94  0.94  0.86  0.93  0.94  0.83  0.87  0.91  0.88  0.93  0.93 
## ps038 ps039 
##  0.90  0.95

Esfericidade

bartlett.test(fullScale)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  fullScale
## Bartlett's K-squared = 4686, df = 37, p-value < 2.2e-16

Cattel’s scree

fa.parallel(fullScale, fm="minres", fa="fa", show.legend=TRUE) # yields 4 components
## Loading required package: parallel
## Loading required package: MASS

plot of chunk unnamed-chunk-16

## Parallel analysis suggests that the number of factors =  9  and the number of components =  5

EFA - Análise fatorial exploratória

faAll <- fa.poly(fullScale, nfactors = 2, rotate = "oblimin")
## Loading required package: mvtnorm
## Loading required package: GPArotation
print.psych(faAll, digits=2, cut=0.3)
## Factor Analysis using method =  minres
## Call: fa.poly(x = fullScale, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR1      h2   u2 com
## ps001        0.55 0.36814 0.63 1.1
## ps002        0.45 0.16470 0.84 1.2
## ps003        0.50 0.27498 0.73 1.0
## ps004        0.64 0.49961 0.50 1.1
## ps005        0.78 0.57678 0.42 1.0
## ps006        0.81 0.66384 0.34 1.0
## ps007        0.83 0.67779 0.32 1.0
## ps008        0.48 0.38785 0.61 1.4
## ps009             0.05152 0.95 1.1
## ps010        0.47 0.17776 0.82 1.2
## ps011  0.36       0.22106 0.78 1.5
## ps012  0.41  0.33 0.40944 0.59 1.9
## ps013             0.00073 1.00 1.5
## ps014 -0.61       0.30293 0.70 1.2
## ps015        0.48 0.21758 0.78 1.0
## ps016  0.62       0.43189 0.57 1.0
## ps017        0.46 0.18196 0.82 1.1
## ps018             0.14828 0.85 2.0
## ps019 -0.42       0.14109 0.86 1.7
## ps020        0.40 0.20716 0.79 1.1
## ps021  0.37       0.11609 0.88 1.1
## ps022        0.37 0.16330 0.84 1.1
## ps023  0.71       0.56540 0.43 1.0
## ps024  0.59       0.44623 0.55 1.1
## ps025             0.11702 0.88 1.4
## ps026  0.59       0.47000 0.53 1.2
## ps027  0.70       0.53918 0.46 1.0
## ps028 -0.59       0.29420 0.71 1.1
## ps029 -0.68       0.41791 0.58 1.0
## ps030        0.35 0.29279 0.71 1.9
## ps031 -0.36       0.10479 0.90 1.2
## ps033 -0.41       0.17639 0.82 1.0
## ps034 -0.39       0.16951 0.83 1.0
## ps035 -0.45       0.19989 0.80 1.0
## ps036        0.31 0.26548 0.73 2.0
## ps037  0.68       0.44302 0.56 1.0
## ps038  0.54       0.26510 0.73 1.0
## ps039  0.43       0.25750 0.74 1.2
## 
##                        MR2  MR1
## SS loadings           6.20 5.21
## Proportion Var        0.16 0.14
## Cumulative Var        0.16 0.30
## Proportion Explained  0.54 0.46
## Cumulative Proportion 0.54 1.00
## 
##  With factor correlations of 
##      MR2  MR1
## MR2 1.00 0.47
## MR1 0.47 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  703  and the objective function was  13.47 with Chi Square of  37128
## The degrees of freedom for the model are 628  and the objective function was  3.17 
## 
## The root mean square of the residuals (RMSR) is  0.06 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  2771 with the empirical chi square  12392  with prob <  0 
## The total number of observations was  2771  with MLE Chi Square =  8733  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.751
## RMSEA index =  0.068  and the 90 % confidence intervals are  0.067 0.07
## BIC =  3755
## Fit based upon off diagonal values = 0.95
## Measures of factor score adequacy             
##                                                 MR2  MR1
## Correlation of scores with factors             0.95 0.95
## Multiple R square of scores with factors       0.91 0.91
## Minimum correlation of possible factor scores  0.82 0.82

RESULTADOS

Versão somente com itens com melhores cargas

# Remove items with low loadings
shortScale  <- fullScale[, -c(9,13,18,25,32,36)]
faShort   <-  fa.poly(shortScale, nfactors = 2, rotate = "oblimin", fm="minres")
print.psych(faShort, digits=2, cut=0.3)
## Factor Analysis using method =  minres
## Call: fa.poly(x = shortScale, nfactors = 2, rotate = "oblimin", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR1   h2   u2 com
## ps001        0.55 0.37 0.63 1.1
## ps002        0.44 0.16 0.84 1.2
## ps003        0.49 0.27 0.73 1.0
## ps004        0.64 0.50 0.50 1.1
## ps005        0.79 0.58 0.42 1.0
## ps006        0.81 0.67 0.33 1.0
## ps007        0.83 0.68 0.32 1.0
## ps008        0.48 0.39 0.61 1.4
## ps010        0.46 0.17 0.83 1.2
## ps011  0.35       0.22 0.78 1.5
## ps012  0.41  0.33 0.41 0.59 1.9
## ps014 -0.61       0.31 0.69 1.2
## ps015        0.48 0.22 0.78 1.0
## ps016  0.62       0.44 0.56 1.0
## ps017        0.45 0.18 0.82 1.1
## ps019 -0.42       0.14 0.86 1.6
## ps020        0.39 0.20 0.80 1.1
## ps021  0.37       0.12 0.88 1.1
## ps022        0.37 0.16 0.84 1.1
## ps023  0.71       0.57 0.43 1.0
## ps024  0.59       0.44 0.56 1.1
## ps026  0.60       0.48 0.52 1.1
## ps027  0.71       0.55 0.45 1.0
## ps028 -0.61       0.31 0.69 1.1
## ps029 -0.69       0.43 0.57 1.0
## ps030        0.35 0.29 0.71 1.9
## ps031 -0.36       0.10 0.90 1.2
## ps034 -0.36       0.16 0.84 1.1
## ps035 -0.43       0.18 0.82 1.0
## ps036        0.32 0.26 0.74 1.9
## ps038  0.51       0.24 0.76 1.0
## ps039  0.42       0.25 0.75 1.2
## 
##                        MR2  MR1
## SS loadings           5.33 5.09
## Proportion Var        0.17 0.16
## Cumulative Var        0.17 0.33
## Proportion Explained  0.51 0.49
## Cumulative Proportion 0.51 1.00
## 
##  With factor correlations of 
##      MR2  MR1
## MR2 1.00 0.47
## MR1 0.47 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  496  and the objective function was  11.34 with Chi Square of  31281
## The degrees of freedom for the model are 433  and the objective function was  2.03 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  2771 with the empirical chi square  6526  with prob <  0 
## The total number of observations was  2771  with MLE Chi Square =  5599  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.808
## RMSEA index =  0.066  and the 90 % confidence intervals are  0.064 0.067
## BIC =  2167
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy             
##                                                 MR2  MR1
## Correlation of scores with factors             0.95 0.95
## Multiple R square of scores with factors       0.90 0.91
## Minimum correlation of possible factor scores  0.80 0.82

Diagrama com fatores

fa.diagram(faShort)

plot of chunk unnamed-chunk-19

CFA - Análise fatorial confirmatória

### Run de model
cfa <- bfactor(shortScale, c(2,2,2,2,2,2,2,2,2,1,1,1,2,1,2,1,2,1,2,1,1,1,1,1,1,2,1,1,1,2,1,1))
## 
Iteration: 1, Log-Lik: -103544.755, Max-Change: 1.76197
Iteration: 2, Log-Lik: -96548.071, Max-Change: 0.90102
Iteration: 3, Log-Lik: -94469.577, Max-Change: 0.75520
Iteration: 4, Log-Lik: -93465.431, Max-Change: 0.63965
Iteration: 5, Log-Lik: -92895.605, Max-Change: 0.47738
Iteration: 6, Log-Lik: -92514.467, Max-Change: 0.84933
Iteration: 7, Log-Lik: -92099.845, Max-Change: 0.30583
Iteration: 8, Log-Lik: -91901.458, Max-Change: 0.16194
Iteration: 9, Log-Lik: -91821.112, Max-Change: 0.09384
Iteration: 10, Log-Lik: -91779.646, Max-Change: 0.06948
Iteration: 11, Log-Lik: -91755.993, Max-Change: 0.05183
Iteration: 12, Log-Lik: -91741.342, Max-Change: 0.04594
Iteration: 13, Log-Lik: -91731.714, Max-Change: 0.04084
Iteration: 14, Log-Lik: -91724.980, Max-Change: 0.03369
Iteration: 15, Log-Lik: -91720.515, Max-Change: 0.13180
Iteration: 16, Log-Lik: -91707.664, Max-Change: 0.01972
Iteration: 17, Log-Lik: -91706.100, Max-Change: 0.01904
Iteration: 18, Log-Lik: -91704.719, Max-Change: 0.10750
Iteration: 19, Log-Lik: -91698.349, Max-Change: 0.01769
Iteration: 20, Log-Lik: -91697.686, Max-Change: 0.01089
Iteration: 21, Log-Lik: -91697.166, Max-Change: 0.06331
Iteration: 22, Log-Lik: -91694.784, Max-Change: 0.00840
Iteration: 23, Log-Lik: -91694.465, Max-Change: 0.00701
Iteration: 24, Log-Lik: -91694.252, Max-Change: 0.02632
Iteration: 25, Log-Lik: -91693.576, Max-Change: 0.00576
Iteration: 26, Log-Lik: -91693.412, Max-Change: 0.00472
Iteration: 27, Log-Lik: -91693.310, Max-Change: 0.01518
Iteration: 28, Log-Lik: -91692.999, Max-Change: 0.00367
Iteration: 29, Log-Lik: -91692.931, Max-Change: 0.00369
Iteration: 30, Log-Lik: -91692.859, Max-Change: 0.01759
Iteration: 31, Log-Lik: -91692.563, Max-Change: 0.00333
Iteration: 32, Log-Lik: -91692.524, Max-Change: 0.00309
Iteration: 33, Log-Lik: -91692.486, Max-Change: 0.01871
Iteration: 34, Log-Lik: -91692.289, Max-Change: 0.00291
Iteration: 35, Log-Lik: -91692.269, Max-Change: 0.00175
Iteration: 36, Log-Lik: -91692.252, Max-Change: 0.01138
Iteration: 37, Log-Lik: -91692.171, Max-Change: 0.00188
Iteration: 38, Log-Lik: -91692.160, Max-Change: 0.00140
Iteration: 39, Log-Lik: -91692.153, Max-Change: 0.00790
Iteration: 40, Log-Lik: -91692.119, Max-Change: 0.00057
Iteration: 41, Log-Lik: -91692.116, Max-Change: 0.00056
Iteration: 42, Log-Lik: -91692.114, Max-Change: 0.00099
Iteration: 43, Log-Lik: -91692.112, Max-Change: 0.00144
Iteration: 44, Log-Lik: -91692.111, Max-Change: 0.00040
Iteration: 45, Log-Lik: -91692.110, Max-Change: 0.00143
Iteration: 46, Log-Lik: -91692.109, Max-Change: 0.00067
Iteration: 47, Log-Lik: -91692.106, Max-Change: 0.00090
Iteration: 48, Log-Lik: -91692.105, Max-Change: 0.00093
Iteration: 49, Log-Lik: -91692.104, Max-Change: 0.00102
Iteration: 50, Log-Lik: -91692.103, Max-Change: 0.00142
Iteration: 51, Log-Lik: -91692.103, Max-Change: 0.00009
### Summary
summary(cfa)
## 
## Factor loadings metric: 
##             G     S1      S2    h2
## ps001  0.5287  0.000  0.3856 0.428
## ps002  0.3625  0.000  0.1406 0.151
## ps003  0.5963  0.000  0.0977 0.365
## ps004  0.5666  0.000  0.5349 0.607
## ps005  0.5968  0.000  0.5240 0.631
## ps006  0.6191  0.000  0.6307 0.781
## ps007  0.6507  0.000  0.5893 0.771
## ps008  0.5413  0.000  0.3669 0.428
## ps010  0.3726  0.000  0.1759 0.170
## ps011  0.3831  0.338  0.0000 0.261
## ps012  0.6211  0.319  0.0000 0.488
## ps014 -0.1785 -0.602  0.0000 0.395
## ps015  0.3651  0.000  0.3663 0.267
## ps016  0.4401  0.563  0.0000 0.510
## ps017  0.4137  0.000  0.1423 0.191
## ps019  0.0531 -0.474  0.0000 0.227
## ps020  0.5941  0.000 -0.0413 0.355
## ps021  0.1521  0.402  0.0000 0.185
## ps022  0.4535  0.000  0.0954 0.215
## ps023  0.5674  0.578  0.0000 0.656
## ps024  0.5363  0.481  0.0000 0.519
## ps026  0.5746  0.480  0.0000 0.561
## ps027  0.4902  0.633  0.0000 0.641
## ps028 -0.2057 -0.620  0.0000 0.427
## ps029 -0.4023 -0.580  0.0000 0.499
## ps030  0.6745  0.000 -0.0534 0.458
## ps031 -0.0998 -0.347  0.0000 0.131
## ps034 -0.3312 -0.286  0.0000 0.192
## ps035 -0.3963 -0.248  0.0000 0.218
## ps036  0.7038  0.000 -0.1419 0.515
## ps038  0.2260  0.520  0.0000 0.321
## ps039  0.5540  0.245  0.0000 0.367
## 
## SS loadings:  7.299 3.794 1.838 
## 
## Factor covariance: 
##    F1 F2 F3
## F1  1  0  0
## F2  0  1  0
## F3  0  0  1
### Coefficients
coef(cfa)
## $ps001
##       a1 a2    a3    d1     d2     d3     d4
## par 1.19  0 0.868 2.395 -1.016 -3.153 -5.883
## 
## $ps002
##       a1 a2   a3    d1    d2     d3     d4
## par 0.67  0 0.26 3.265 0.649 -0.408 -3.198
## 
## $ps003
##        a1 a2    a3    d1    d2     d3     d4
## par 1.274  0 0.209 3.851 0.664 -1.021 -4.114
## 
## $ps004
##        a1 a2    a3    d1   d2     d3     d4
## par 1.539  0 1.453 2.777 -1.3 -3.361 -6.459
## 
## $ps005
##        a1 a2    a3    d1     d2     d3     d4
## par 1.672  0 1.468 4.296 -0.149 -1.805 -5.599
## 
## $ps006
##        a1 a2    a3    d1     d2     d3     d4
## par 2.252  0 2.294 4.538 -1.035 -3.441 -8.165
## 
## $ps007
##        a1 a2    a3    d1     d2     d3     d4
## par 2.313  0 2.095 4.899 -0.835 -3.516 -8.317
## 
## $ps008
##        a1 a2    a3    d1     d2     d3     d4
## par 1.218  0 0.825 2.606 -1.159 -3.452 -6.008
## 
## $ps010
##        a1 a2    a3   d1    d2     d3     d4
## par 0.696  0 0.328 3.61 0.208 -1.063 -3.931
## 
## $ps011
##        a1    a2 a3    d1     d2     d3     d4
## par 0.758 0.669  0 1.703 -1.827 -3.001 -5.305
## 
## $ps012
##        a1    a2 a3    d1     d2    d3     d4
## par 1.477 0.758  0 2.208 -2.004 -3.63 -6.738
## 
## $ps014
##         a1     a2 a3    d1    d2   d3     d4
## par -0.391 -1.318  0 5.924 5.254 4.18 -0.599
## 
## $ps015
##        a1 a2    a3   d1    d2     d3     d4
## par 0.726  0 0.728 3.04 0.143 -1.238 -4.209
## 
## $ps016
##        a1    a2 a3    d1     d2     d3     d4
## par 1.071 1.369  0 1.219 -3.042 -5.195 -7.156
## 
## $ps017
##        a1 a2    a3    d1    d2     d3     d4
## par 0.783  0 0.269 3.281 0.987 -0.149 -3.501
## 
## $ps019
##        a1     a2 a3    d1    d2    d3     d4
## par 0.103 -0.918  0 4.694 2.729 1.675 -1.379
## 
## $ps020
##        a1 a2     a3    d1    d2     d3     d4
## par 1.259  0 -0.087 3.026 0.288 -1.156 -4.552
## 
## $ps021
##        a1    a2 a3    d1     d2     d3     d4
## par 0.287 0.757  0 0.973 -1.618 -3.154 -5.373
## 
## $ps022
##        a1 a2    a3    d1    d2     d3     d4
## par 0.871  0 0.183 3.389 0.851 -0.649 -3.857
## 
## $ps023
##        a1    a2 a3    d1     d2     d3     d4
## par 1.646 1.677  0 1.344 -3.696 -6.219 -8.421
## 
## $ps024
##        a1    a2 a3    d1     d2     d3     d4
## par 1.317 1.181  0 1.588 -2.427 -4.761 -7.506
## 
## $ps026
##        a1    a2 a3    d1     d2     d3     d4
## par 1.475 1.233  0 1.943 -2.456 -4.469 -6.753
## 
## $ps027
##        a1    a2 a3    d1     d2     d3     d4
## par 1.393 1.799  0 0.924 -3.952 -6.205 -8.258
## 
## $ps028
##         a1     a2 a3   d1    d2    d3     d4
## par -0.463 -1.395  0 5.83 4.726 3.388 -1.259
## 
## $ps029
##         a1     a2 a3    d1    d2    d3     d4
## par -0.967 -1.395  0 6.147 4.672 2.645 -1.566
## 
## $ps030
##        a1 a2     a3    d1    d2     d3     d4
## par 1.559  0 -0.124 3.732 0.308 -2.181 -5.417
## 
## $ps031
##         a1     a2 a3    d1    d2    d3     d4
## par -0.182 -0.634  0 5.474 2.455 0.872 -2.756
## 
## $ps034
##         a1     a2 a3    d1    d2    d3     d4
## par -0.627 -0.541  0 4.387 2.056 0.604 -2.018
## 
## $ps035
##         a1     a2 a3    d1    d2    d3     d4
## par -0.763 -0.477  0 4.853 2.575 0.336 -2.619
## 
## $ps036
##        a1 a2     a3    d1   d2     d3     d4
## par 1.721  0 -0.347 3.347 0.01 -2.175 -5.541
## 
## $ps038
##        a1    a2 a3    d1    d2     d3     d4
## par 0.467 1.074  0 0.459 -2.71 -3.818 -5.085
## 
## $ps039
##        a1    a2 a3    d1     d2     d3     d4
## par 1.185 0.523  0 2.305 -0.878 -2.526 -3.771
## 
## $GroupPars
##     MEAN_1 MEAN_2 MEAN_3 COV_11 COV_21 COV_31 COV_22 COV_32 COV_33
## par      0      0      0      1      0      0      1      0      1