library(dplyr)
## Warning: package 'dplyr' was built under R version 3.3.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
## Warning: package 'readr' was built under R version 3.3.2
library(tidyr)

veh<- read.csv("C:/Users/user/Desktop/UFM/4to semestre/Data2/proyectos/intro_ds2/trafico/VEH_AUX.csv", stringsAsFactors=FALSE)
dim(veh)
## [1] 48923    16
names(veh)
##  [1] "YEAR"     "ST_CASE"  "VEH_NO"   "A_BODY"   "A_IMP1"   "A_IMP2"  
##  [7] "A_VROLL"  "A_LIC_S"  "A_LIC_C"  "A_CDL_S"  "A_MC_L_S" "A_SPVEH" 
## [13] "A_SBUS"   "A_MOD_YR" "A_DRDIS"  "A_DRDRO"
summary(veh)
##       YEAR         ST_CASE           VEH_NO           A_BODY     
##  Min.   :2015   Min.   : 10001   Min.   : 1.000   Min.   :1.000  
##  1st Qu.:2015   1st Qu.:122161   1st Qu.: 1.000   1st Qu.:1.000  
##  Median :2015   Median :270341   Median : 1.000   Median :2.000  
##  Mean   :2015   Mean   :276903   Mean   : 1.504   Mean   :2.928  
##  3rd Qu.:2015   3rd Qu.:420660   3rd Qu.: 2.000   3rd Qu.:4.000  
##  Max.   :2015   Max.   :560130   Max.   :58.000   Max.   :9.000  
##      A_IMP1          A_IMP2     A_VROLL         A_LIC_S     
##  Min.   :1.000   Min.   :0   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:0   1st Qu.:2.000   1st Qu.:1.000  
##  Median :2.000   Median :0   Median :2.000   Median :1.000  
##  Mean   :2.749   Mean   :0   Mean   :1.837   Mean   :1.482  
##  3rd Qu.:3.000   3rd Qu.:0   3rd Qu.:2.000   3rd Qu.:1.000  
##  Max.   :7.000   Max.   :0   Max.   :2.000   Max.   :4.000  
##     A_LIC_C         A_CDL_S         A_MC_L_S        A_SPVEH    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:4.000   1st Qu.:2.00  
##  Median :1.000   Median :2.000   Median :4.000   Median :2.00  
##  Mean   :1.206   Mean   :1.911   Mean   :3.719   Mean   :1.82  
##  3rd Qu.:1.000   3rd Qu.:2.000   3rd Qu.:4.000   3rd Qu.:2.00  
##  Max.   :3.000   Max.   :3.000   Max.   :4.000   Max.   :2.00  
##      A_SBUS         A_MOD_YR       A_DRDIS         A_DRDRO     
##  Min.   :1.000   Min.   :1923   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:2001   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :2005   Median :2.000   Median :2.000  
##  Mean   :2.996   Mean   :2193   Mean   :1.968   Mean   :1.985  
##  3rd Qu.:3.000   3rd Qu.:2010   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :3.000   Max.   :9999   Max.   :2.000   Max.   :2.000
per<- read.csv("C:/Users/user/Desktop/UFM/4to semestre/Data2/proyectos/intro_ds2/trafico/PER_AUX.csv", stringsAsFactors=FALSE)
dim(per)
## [1] 80587    22
names(per)
##  [1] "A_AGE1"   "A_AGE2"   "A_AGE3"   "A_AGE4"   "A_AGE5"   "A_AGE6"  
##  [7] "A_AGE7"   "A_AGE8"   "A_AGE9"   "ST_CASE"  "VEH_NO"   "PER_NO"  
## [13] "YEAR"     "A_PTYPE"  "A_REST"   "A_ALCTES" "A_HISP"   "A_RCAT"  
## [19] "A_HRACE"  "A_EJECT"  "A_PERINJ" "A_LOC"
summary(per)
##      A_AGE1         A_AGE2          A_AGE3           A_AGE4    
##  Min.   :1.00   Min.   :1.000   Min.   : 1.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.: 6.000   1st Qu.:3.00  
##  Median :3.00   Median :5.000   Median : 8.000   Median :5.00  
##  Mean   :2.91   Mean   :3.997   Mean   : 7.754   Mean   :4.54  
##  3rd Qu.:4.00   3rd Qu.:5.000   3rd Qu.:10.000   3rd Qu.:6.00  
##  Max.   :5.00   Max.   :6.000   Max.   :13.000   Max.   :8.00  
##      A_AGE5           A_AGE6           A_AGE7           A_AGE8     
##  Min.   : 1.000   Min.   : 1.000   Min.   : 1.000   Min.   :1.000  
##  1st Qu.: 3.000   1st Qu.: 3.000   1st Qu.: 5.000   1st Qu.:2.000  
##  Median : 5.000   Median : 5.000   Median : 7.000   Median :3.000  
##  Mean   : 4.876   Mean   : 4.885   Mean   : 6.802   Mean   :3.462  
##  3rd Qu.: 7.000   3rd Qu.: 7.000   3rd Qu.: 9.000   3rd Qu.:5.000  
##  Max.   :10.000   Max.   :10.000   Max.   :12.000   Max.   :7.000  
##      A_AGE9         ST_CASE           VEH_NO           PER_NO      
##  Min.   :1.000   Min.   : 10001   Min.   : 0.000   Min.   : 1.000  
##  1st Qu.:2.000   1st Qu.:121977   1st Qu.: 1.000   1st Qu.: 1.000  
##  Median :2.000   Median :270282   Median : 1.000   Median : 1.000  
##  Mean   :1.937   Mean   :275607   Mean   : 1.389   Mean   : 1.629  
##  3rd Qu.:2.000   3rd Qu.:420645   3rd Qu.: 2.000   3rd Qu.: 2.000  
##  Max.   :3.000   Max.   :560130   Max.   :58.000   Max.   :51.000  
##       YEAR         A_PTYPE         A_REST         A_ALCTES    
##  Min.   :2015   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2015   1st Qu.:1.00   1st Qu.:1.000   1st Qu.:2.000  
##  Median :2015   Median :1.00   Median :1.000   Median :3.000  
##  Mean   :2015   Mean   :1.51   Mean   :1.575   Mean   :2.566  
##  3rd Qu.:2015   3rd Qu.:2.00   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :2015   Max.   :5.00   Max.   :3.000   Max.   :5.000  
##      A_HISP           A_RCAT          A_HRACE         A_EJECT     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :1.000  
##  Mean   :0.6326   Mean   :0.9696   Mean   :1.426   Mean   :1.101  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:2.000   3rd Qu.:1.000  
##  Max.   :3.0000   Max.   :8.0000   Max.   :9.000   Max.   :3.000  
##     A_PERINJ         A_LOC     
##  Min.   :1.000   Min.   :1.00  
##  1st Qu.:1.000   1st Qu.:1.00  
##  Median :6.000   Median :1.00  
##  Mean   :3.823   Mean   :1.17  
##  3rd Qu.:6.000   3rd Qu.:1.00  
##  Max.   :6.000   Max.   :5.00
acc<- read.csv("C:/Users/user/Desktop/UFM/4to semestre/Data2/proyectos/intro_ds2/trafico/ACC_AUX.csv", stringsAsFactors=FALSE)
dim(acc)
## [1] 32166    38
names(acc)
##  [1] "YEAR"      "STATE"     "ST_CASE"   "COUNTY"    "FATALS"   
##  [6] "A_CRAINJ"  "A_REGION"  "A_RU"      "A_INTER"   "A_RELRD"  
## [11] "A_INTSEC"  "A_ROADFC"  "A_JUNC"    "A_MANCOL"  "A_TOD"    
## [16] "A_DOW"     "A_CT"      "A_LT"      "A_MC"      "A_SPCRA"  
## [21] "A_PED"     "A_PED_F"   "A_PEDAL"   "A_PEDAL_F" "A_ROLL"   
## [26] "A_POLPUR"  "A_POSBAC"  "A_D15_19"  "A_D16_19"  "A_D15_20" 
## [31] "A_D16_20"  "A_D65PLS"  "A_D21_24"  "A_D16_24"  "A_RD"     
## [36] "A_HR"      "A_DIST"    "A_DROWSY"
summary(acc)
##       YEAR          STATE         ST_CASE           COUNTY      
##  Min.   :2015   Min.   : 1.0   Min.   : 10001   Min.   :  1.00  
##  1st Qu.:2015   1st Qu.:12.0   1st Qu.:122183   1st Qu.: 31.00  
##  Median :2015   Median :28.0   Median :280003   Median : 71.00  
##  Mean   :2015   Mean   :27.6   Mean   :276730   Mean   : 91.23  
##  3rd Qu.:2015   3rd Qu.:42.0   3rd Qu.:420566   3rd Qu.:115.00  
##  Max.   :2015   Max.   :56.0   Max.   :560130   Max.   :999.00  
##      FATALS          A_CRAINJ    A_REGION           A_RU      
##  Min.   : 1.000   Min.   :1   Min.   : 1.000   Min.   :1.000  
##  1st Qu.: 1.000   1st Qu.:1   1st Qu.: 4.000   1st Qu.:1.000  
##  Median : 1.000   Median :1   Median : 5.000   Median :2.000  
##  Mean   : 1.091   Mean   :1   Mean   : 5.333   Mean   :1.601  
##  3rd Qu.: 1.000   3rd Qu.:1   3rd Qu.: 7.000   3rd Qu.:2.000  
##  Max.   :10.000   Max.   :1   Max.   :10.000   Max.   :3.000  
##     A_INTER         A_RELRD         A_INTSEC       A_ROADFC    
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.00   1st Qu.:3.000  
##  Median :2.000   Median :1.000   Median :2.00   Median :4.000  
##  Mean   :1.961   Mean   :2.136   Mean   :1.76   Mean   :3.927  
##  3rd Qu.:2.000   3rd Qu.:4.000   3rd Qu.:2.00   3rd Qu.:5.000  
##  Max.   :3.000   Max.   :6.000   Max.   :3.00   Max.   :7.000  
##      A_JUNC         A_MANCOL         A_TOD           A_DOW      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :2.000   Median :1.000   Median :2.000   Median :1.000  
##  Mean   :1.835   Mean   :1.948   Mean   :1.526   Mean   :1.412  
##  3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :4.000   Max.   :7.000   Max.   :3.000   Max.   :3.000  
##       A_CT            A_LT            A_MC          A_SPCRA     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000  
##  Median :1.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :1.487   Mean   :1.888   Mean   :1.848   Mean   :1.734  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :3.000   Max.   :2.000   Max.   :2.000   Max.   :2.000  
##      A_PED          A_PED_F         A_PEDAL        A_PEDAL_F    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :1.834   Mean   :1.835   Mean   :1.975   Mean   :1.975  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :2.000  
##      A_ROLL         A_POLPUR        A_POSBAC        A_D15_19    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :3.000   Median :2.000  
##  Mean   :1.758   Mean   :1.991   Mean   :2.308   Mean   :1.904  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000   Max.   :3.000   Max.   :2.000  
##     A_D16_19        A_D15_20        A_D16_20        A_D65PLS    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :1.907   Mean   :1.871   Mean   :1.874   Mean   :1.812  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :2.000  
##     A_D21_24        A_D16_24          A_RD            A_HR      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :1.000   Median :2.000  
##  Mean   :1.852   Mean   :1.734   Mean   :1.475   Mean   :1.947  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :2.000  
##      A_DIST         A_DROWSY    
##  Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000  
##  Mean   :1.901   Mean   :1.977  
##  3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000
accident <- read_csv("C:/Users/user/Desktop/UFM/4to semestre/Data2/proyectos/intro_ds2/trafico/accident.csv")
## Parsed with column specification:
## cols(
##   .default = col_integer(),
##   TWAY_ID = col_character(),
##   TWAY_ID2 = col_character(),
##   LATITUDE = col_double(),
##   LONGITUD = col_double(),
##   RAIL = col_character()
## )
## See spec(...) for full column specifications.
person <- read_csv("C:/Users/user/Desktop/UFM/4to semestre/Data2/proyectos/intro_ds2/trafico/person.csv")
## Parsed with column specification:
## cols(
##   .default = col_integer()
## )
## See spec(...) for full column specifications.
vehicle <- read_csv("C:/Users/user/Desktop/UFM/4to semestre/Data2/proyectos/intro_ds2/trafico/vehicle.csv")
## Parsed with column specification:
## cols(
##   .default = col_integer(),
##   VIN = col_character(),
##   VIN_1 = col_character(),
##   VIN_2 = col_character(),
##   VIN_3 = col_character(),
##   VIN_4 = col_character(),
##   VIN_5 = col_character(),
##   VIN_6 = col_character(),
##   VIN_7 = col_character(),
##   VIN_8 = col_character(),
##   VIN_9 = col_character(),
##   VIN_10 = col_character(),
##   VIN_11 = col_character(),
##   VIN_12 = col_character(),
##   MCARR_I2 = col_character(),
##   MCARR_ID = col_character()
## )
## See spec(...) for full column specifications.
names(vehicle)
##   [1] "STATE"    "ST_CASE"  "VEH_NO"   "VE_FORMS" "NUMOCCS"  "DAY"     
##   [7] "MONTH"    "HOUR"     "MINUTE"   "HARM_EV"  "MAN_COLL" "UNITTYPE"
##  [13] "HIT_RUN"  "REG_STAT" "OWNER"    "MAKE"     "MODEL"    "MAK_MOD" 
##  [19] "BODY_TYP" "MOD_YEAR" "VIN"      "VIN_1"    "VIN_2"    "VIN_3"   
##  [25] "VIN_4"    "VIN_5"    "VIN_6"    "VIN_7"    "VIN_8"    "VIN_9"   
##  [31] "VIN_10"   "VIN_11"   "VIN_12"   "TOW_VEH"  "J_KNIFE"  "MCARR_I1"
##  [37] "MCARR_I2" "MCARR_ID" "GVWR"     "V_CONFIG" "CARGO_BT" "HAZ_INV" 
##  [43] "HAZ_PLAC" "HAZ_ID"   "HAZ_CNO"  "HAZ_REL"  "BUS_USE"  "SPEC_USE"
##  [49] "EMER_USE" "TRAV_SP"  "UNDERIDE" "ROLLOVER" "ROLINLOC" "IMPACT1" 
##  [55] "DEFORMED" "TOWED"    "M_HARM"   "VEH_SC1"  "VEH_SC2"  "FIRE_EXP"
##  [61] "DR_PRES"  "L_STATE"  "DR_ZIP"   "L_STATUS" "L_TYPE"   "CDL_STAT"
##  [67] "L_ENDORS" "L_COMPL"  "L_RESTRI" "DR_HGT"   "DR_WGT"   "PREV_ACC"
##  [73] "PREV_SUS" "PREV_DWI" "PREV_SPD" "PREV_OTH" "FIRST_MO" "FIRST_YR"
##  [79] "LAST_MO"  "LAST_YR"  "SPEEDREL" "DR_SF1"   "DR_SF2"   "DR_SF3"  
##  [85] "DR_SF4"   "VTRAFWAY" "VNUM_LAN" "VSPD_LIM" "VALIGN"   "VPROFILE"
##  [91] "VPAVETYP" "VSURCOND" "VTRAFCON" "VTCONT_F" "P_CRASH1" "P_CRASH2"
##  [97] "P_CRASH3" "PCRASH4"  "PCRASH5"  "ACC_TYPE" "DEATHS"   "DR_DRINK"
names(person)
##  [1] "STATE"      "ST_CASE"    "VE_FORMS"   "VEH_NO"     "PER_NO"    
##  [6] "STR_VEH"    "COUNTY"     "DAY"        "MONTH"      "HOUR"      
## [11] "MINUTE"     "RUR_URB"    "FUNC_SYS"   "HARM_EV"    "MAN_COLL"  
## [16] "SCH_BUS"    "MAKE"       "MAK_MOD"    "BODY_TYP"   "MOD_YEAR"  
## [21] "TOW_VEH"    "SPEC_USE"   "EMER_USE"   "ROLLOVER"   "IMPACT1"   
## [26] "FIRE_EXP"   "AGE"        "SEX"        "PER_TYP"    "INJ_SEV"   
## [31] "SEAT_POS"   "REST_USE"   "REST_MIS"   "AIR_BAG"    "EJECTION"  
## [36] "EJ_PATH"    "EXTRICAT"   "DRINKING"   "ALC_DET"    "ALC_STATUS"
## [41] "ATST_TYP"   "ALC_RES"    "DRUGS"      "DRUG_DET"   "DSTATUS"   
## [46] "DRUGTST1"   "DRUGTST2"   "DRUGTST3"   "DRUGRES1"   "DRUGRES2"  
## [51] "DRUGRES3"   "HOSPITAL"   "DOA"        "DEATH_DA"   "DEATH_MO"  
## [56] "DEATH_YR"   "DEATH_HR"   "DEATH_MN"   "DEATH_TM"   "LAG_HRS"   
## [61] "LAG_MINS"   "P_SF1"      "P_SF2"      "P_SF3"      "WORK_INJ"  
## [66] "HISPANIC"   "RACE"       "LOCATION"
names(accident)
##  [1] "STATE"      "ST_CASE"    "VE_TOTAL"   "VE_FORMS"   "PVH_INVL"  
##  [6] "PEDS"       "PERNOTMVIT" "PERMVIT"    "PERSONS"    "COUNTY"    
## [11] "CITY"       "DAY"        "MONTH"      "YEAR"       "DAY_WEEK"  
## [16] "HOUR"       "MINUTE"     "NHS"        "RUR_URB"    "FUNC_SYS"  
## [21] "RD_OWNER"   "ROUTE"      "TWAY_ID"    "TWAY_ID2"   "MILEPT"    
## [26] "LATITUDE"   "LONGITUD"   "SP_JUR"     "HARM_EV"    "MAN_COLL"  
## [31] "RELJCT1"    "RELJCT2"    "TYP_INT"    "WRK_ZONE"   "REL_ROAD"  
## [36] "LGT_COND"   "WEATHER1"   "WEATHER2"   "WEATHER"    "SCH_BUS"   
## [41] "RAIL"       "NOT_HOUR"   "NOT_MIN"    "ARR_HOUR"   "ARR_MIN"   
## [46] "HOSP_HR"    "HOSP_MN"    "CF1"        "CF2"        "CF3"       
## [51] "FATALS"     "DRUNK_DR"

Unir Datasets

data2 <- left_join(acc,veh,by = "ST_CASE")

data3 <- left_join(data2, per,"ST_CASE")
 names(data3)
##  [1] "YEAR.x"    "STATE"     "ST_CASE"   "COUNTY"    "FATALS"   
##  [6] "A_CRAINJ"  "A_REGION"  "A_RU"      "A_INTER"   "A_RELRD"  
## [11] "A_INTSEC"  "A_ROADFC"  "A_JUNC"    "A_MANCOL"  "A_TOD"    
## [16] "A_DOW"     "A_CT"      "A_LT"      "A_MC"      "A_SPCRA"  
## [21] "A_PED"     "A_PED_F"   "A_PEDAL"   "A_PEDAL_F" "A_ROLL"   
## [26] "A_POLPUR"  "A_POSBAC"  "A_D15_19"  "A_D16_19"  "A_D15_20" 
## [31] "A_D16_20"  "A_D65PLS"  "A_D21_24"  "A_D16_24"  "A_RD"     
## [36] "A_HR"      "A_DIST"    "A_DROWSY"  "YEAR.y"    "VEH_NO.x" 
## [41] "A_BODY"    "A_IMP1"    "A_IMP2"    "A_VROLL"   "A_LIC_S"  
## [46] "A_LIC_C"   "A_CDL_S"   "A_MC_L_S"  "A_SPVEH"   "A_SBUS"   
## [51] "A_MOD_YR"  "A_DRDIS"   "A_DRDRO"   "A_AGE1"    "A_AGE2"   
## [56] "A_AGE3"    "A_AGE4"    "A_AGE5"    "A_AGE6"    "A_AGE7"   
## [61] "A_AGE8"    "A_AGE9"    "VEH_NO.y"  "PER_NO"    "YEAR"     
## [66] "A_PTYPE"   "A_REST"    "A_ALCTES"  "A_HISP"    "A_RCAT"   
## [71] "A_HRACE"   "A_EJECT"   "A_PERINJ"  "A_LOC"

Reporte 1

a <- filter(acc, YEAR == 2015 )
b <- select(a, FATALS, STATE)
d <- count(b, STATE)
c <- group_by(d, STATE)

Reporte 2

e<- filter(data3, YEAR == 2015)
f <- select(e, A_DOW, STATE, PER_NO)
count(f, PER_NO, A_DOW)
## Source: local data frame [73 x 3]
## Groups: PER_NO [?]
## 
##    PER_NO A_DOW     n
##     <int> <int> <int>
## 1       1     1 66972
## 2       1     2 37595
## 3       1     3    86
## 4       2     1 17130
## 5       2     2 13148
## 6       2     3    16
## 7       3     1  5627
## 8       3     2  4931
## 9       3     3     4
## 10      4     1  2549
## # ... with 63 more rows

Reporte 3

g <- filter(data3, YEAR == 2015)
h <- select(g, A_DOW, STATE)

Preguntas

1. ¿Cuántas fatalidades fueron causadas por alta velocidad (speeding)?

m<- select(vehicle, SPEEDREL, DEATHS)
n <- count(m, SPEEDREL)

2. Indicar por raza la cantidad de fatalidades en el 2015

i <- filter(person, RACE, DEATH_HR)
count(i, RACE, DEATH_HR)
## Source: local data frame [366 x 3]
## Groups: RACE [?]
## 
##     RACE DEATH_HR     n
##    <int>    <int> <int>
## 1      1        1   899
## 2      1        2   840
## 3      1        3   675
## 4      1        4   581
## 5      1        5   608
## 6      1        6   804
## 7      1        7   807
## 8      1        8   738
## 9      1        9   703
## 10     1       10   751
## # ... with 356 more rows