options(rpubs.upload.method = "internal")
options(RCurlOptions = list(verbose = FALSE, capath = system.file("CurlSSL", "cacert.pem", package = "RCurl"), ssl.verifypeer = FALSE))      
setwd("~/Documents/Dropbox/Research/Eric")
combined2<-read.csv("old and new data.csv", header=T, sep=",")
combined2$bd<-combined2$beta*((1/(1+combined2$delta))^(2/52))*1.5
combined2$bd<-combined2$bd-mean(combined2$bd)
combined2$beta<-combined2$beta-mean(combined2$beta)
combined2$delta<-combined2$delta-mean(combined2$delta)

#re-coding education as numeric
table(combined2$education)
## 
##                                    9th, 10th or 11th grade 
##                                                          5 
##                     Associate degree (for example: AA, AS) 
##                                                        112 
##                Bachelor's degree (for example: BA, AB, BS) 
##                                                        423 
##                   Doctorate degree (for example: PhD, EdD) 
##                                                         12 
##   High school diploma or the equivalent (for example: GED) 
##                                                        101 
## Master's degree (for example: MA, MS, MEng, MEd, MSW, MBA) 
##                                                         92 
##   Professional degree (for example: MD, DDS, DVM, LLB, JD) 
##                                                         14 
##                       Some college, and currently enrolled 
##                                                         98 
##                   Some college, but not currently enrolled 
##                                                        231
combined2$edu[combined2$education=="9th, 10th or 11th grade"]<-1
combined2$edu[combined2$education=="High school diploma or the equivalent (for example: GED)"]<-2
combined2$edu[combined2$education=="Associate degree (for example: AA, AS)"]<-3
combined2$edu[combined2$education=="Some college, but not currently enrolled"]<-4
combined2$edu[combined2$education=="Some college, and currently enrolled"]<-5
combined2$edu[combined2$education=="Bachelor's degree (for example: BA, AB, BS)"]<-6
combined2$edu[combined2$education=="Professional degree (for example: MD, DDS, DVM, LLB, JD)"]<-6
combined2$edu[combined2$education=="Master's degree (for example: MA, MS, MEng, MEd, MSW, MBA)"]<-7
combined2$edu[combined2$education=="Doctorate degree (for example: PhD, EdD)"]<-8
combined2$edu<-as.numeric(combined2$edu)

combined2$edu[combined2$education=="9th, 10th or 11th grade"]<-1
combined2$edu[combined2$education=="High school diploma or the equivalent (for example: GED)"]<-2
combined2$edu[combined2$education=="Associate degree (for example: AA, AS)"]<-3
combined2$edu[combined2$education=="Some college, but not currently enrolled"]<-4
combined2$edu[combined2$education=="Some college, and currently enrolled"]<-5
combined2$edu[combined2$education=="Bachelor's degree (for example: BA, AB, BS)"]<-6
combined2$edu[combined2$education=="Professional degree (for example: MD, DDS, DVM, LLB, JD)"]<-6
combined2$edu[combined2$education=="Master's degree (for example: MA, MS, MEng, MEd, MSW, MBA)"]<-7
combined2$edu[combined2$education=="Doctorate degree (for example: PhD, EdD)"]<-8

table(combined2$edu)
## 
##   1   2   3   4   5   6   7   8 
##   5 101 112 231  98 437  92  12
#centering
summary(combined2$edu)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   4.000   5.000   4.889   6.000   8.000
combined2$eduCentered<-combined2$edu - 4.889
summary(combined2$eduCentered)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -3.889000 -0.889000  0.111000 -0.000213  1.111000  3.111000
#re-coding income as numeric
table(combined2$income)
## 
##   $10,000 to $19,999 $100,000 to $124,999 $125,000 to $149,999 
##                  106                   69                   36 
## $150,000 to $199,999   $20,000 to $29,999     $200,000 or more 
##                   24                  133                   12 
##   $30,000 to $39,999   $40,000 to $49,999   $50,000 to $59,999 
##                  147                  132                  102 
##   $60,000 to $69,999   $70,000 to $79,999   $80,000 to $89,999 
##                   86                   65                   53 
##   $90,000 to $99,999    Less than $10,000 
##                   41                   82
combined2$inc[combined2$income=="Less than $10,000"]<-1
combined2$inc[combined2$income=="$10,000 to $19,999"]<-2
combined2$inc[combined2$income=="$20,000 to $29,999"]<-3
combined2$inc[combined2$income=="$30,000 to $39,999"]<-4
combined2$inc[combined2$income=="$40,000 to $49,999"]<-5
combined2$inc[combined2$income=="$50,000 to $59,999"]<-6
combined2$inc[combined2$income=="$60,000 to $69,999"]<-7
combined2$inc[combined2$income=="$70,000 to $79,999"]<-8
combined2$inc[combined2$income=="$80,000 to $89,999"]<-9
combined2$inc[combined2$income=="$90,000 to $99,999"]<-10
combined2$inc[combined2$income=="$100,000 to $124,999"]<-11
combined2$inc[combined2$income=="$150,000 to $199,999"]<-12
combined2$inc[combined2$income=="200,000 or more"]<-13

combined2$inc<-as.numeric(combined2$inc)

combined2$inc[combined2$income=="Less than $10,000"]<-1
combined2$inc[combined2$income=="$10,000 to $19,999"]<-2
combined2$inc[combined2$income=="$20,000 to $29,999"]<-3
combined2$inc[combined2$income=="$30,000 to $39,999"]<-4
combined2$inc[combined2$income=="$40,000 to $49,999"]<-5
combined2$inc[combined2$income=="$50,000 to $59,999"]<-6
combined2$inc[combined2$income=="$60,000 to $69,999"]<-7
combined2$inc[combined2$income=="$70,000 to $79,999"]<-8
combined2$inc[combined2$income=="$80,000 to $89,999"]<-9
combined2$inc[combined2$income=="$90,000 to $99,999"]<-10
combined2$inc[combined2$income=="$100,000 to $124,999"]<-11
combined2$inc[combined2$income=="$150,000 to $199,999"]<-12
combined2$inc[combined2$income=="200,000 or more"]<-13

table(combined2$inc)
## 
##   1   2   3   4   5   6   7   8   9  10  11  12 
##  82 106 169 147 132 114  86  65  53  41  69  24
#centering
combined2$incCentered<-combined2$inc - mean(combined2$inc)
summary(combined2$incCentered)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -4.3210 -2.3210 -0.3208  0.0000  1.6790  6.6790
summary(aov(SS~cond + eduCentered + eduCentered*cond, data=combined2))
##                    Df Sum Sq Mean Sq F value   Pr(>F)    
## cond                2   1.77   0.887   3.632   0.0268 *  
## eduCentered         1   4.74   4.741  19.401 1.16e-05 ***
## cond:eduCentered    2   0.92   0.459   1.879   0.1533    
## Residuals        1082 264.39   0.244                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS~cond + incCentered + incCentered*cond, data=combined2))
##                    Df Sum Sq Mean Sq F value  Pr(>F)   
## cond                2   1.77  0.8875   3.586 0.02804 * 
## incCentered         1   1.93  1.9326   7.809 0.00529 **
## cond:incCentered    2   0.34  0.1681   0.679 0.50713   
## Residuals        1082 267.78  0.2475                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS~cond + gender + gender*cond, data=combined2))
##              Df Sum Sq Mean Sq F value Pr(>F)  
## cond          2   1.32  0.6584   2.634 0.0723 .
## gender        2   0.38  0.1904   0.762 0.4671  
## cond:gender   3   0.36  0.1211   0.485 0.6930  
## Residuals   909 227.18  0.2499                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 171 observations deleted due to missingness
summary(aov(SS~cond + age + age*cond, data=combined2))
##               Df Sum Sq Mean Sq F value Pr(>F)  
## cond           2   1.77  0.8875   3.560 0.0288 *
## age            1   0.22  0.2166   0.869 0.3515  
## cond:age       2   0.09  0.0441   0.177 0.8380  
## Residuals   1082 269.74  0.2493                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ cond*age*bd, data=combined2))
##               Df Sum Sq Mean Sq F value   Pr(>F)    
## cond           2   1.77   0.887   3.850 0.021584 *  
## age            1   0.22   0.217   0.939 0.332659    
## bd             1  17.17  17.166  74.461  < 2e-16 ***
## cond:age       2   0.03   0.014   0.059 0.942807    
## cond:bd        2   3.84   1.922   8.337 0.000255 ***
## age:bd         1   0.18   0.178   0.772 0.379899    
## cond:age:bd    2   0.55   0.276   1.196 0.302688    
## Residuals   1076 248.06   0.231                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ cond*eduCentered*bd, data=combined2))
##                       Df Sum Sq Mean Sq F value   Pr(>F)    
## cond                   2   1.77   0.887   3.893 0.020671 *  
## eduCentered            1   4.74   4.741  20.795 5.70e-06 ***
## bd                     1  14.64  14.641  64.224 2.87e-15 ***
## cond:eduCentered       2   1.00   0.499   2.191 0.112327    
## cond:bd                2   3.32   1.661   7.287 0.000718 ***
## eduCentered:bd         1   0.70   0.705   3.091 0.079009 .  
## cond:eduCentered:bd    2   0.35   0.174   0.762 0.466916    
## Residuals           1076 245.29   0.228                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ cond*incCentered*bd, data=combined2))
##                       Df Sum Sq Mean Sq F value   Pr(>F)    
## cond                   2   1.77   0.887   3.882 0.020901 *  
## incCentered            1   1.93   1.933   8.453 0.003719 ** 
## bd                     1  16.34  16.339  71.470  < 2e-16 ***
## cond:incCentered       2   0.28   0.140   0.614 0.541450    
## cond:bd                2   3.97   1.983   8.675 0.000183 ***
## incCentered:bd         1   0.60   0.599   2.621 0.105761    
## cond:incCentered:bd    2   0.93   0.467   2.044 0.130018    
## Residuals           1076 245.99   0.229                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ cond*gender*bd, data=combined2))
##                 Df Sum Sq Mean Sq F value   Pr(>F)    
## cond             2   1.32   0.658   2.850   0.0583 .  
## gender           2   0.38   0.190   0.824   0.4388    
## bd               1  13.32  13.319  57.660 7.78e-14 ***
## cond:gender      3   0.33   0.111   0.479   0.6972    
## cond:bd          2   4.70   2.349  10.168 4.30e-05 ***
## gender:bd        2   0.48   0.242   1.047   0.3514    
## cond:gender:bd   2   0.36   0.178   0.770   0.4632    
## Residuals      902 208.35   0.231                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 171 observations deleted due to missingness

1. Re-run 3-factor model with factors re-ordered.

We can start with eric’s suggested changes to the 3-factor model. It doesn’t appear to reveal the significant differences we were hoping for.

library(gdata)
combined2$cond <- reorder(combined2$cond, new.order = c(2, 3, 1))
summary(glm(SS ~ cond, data = combined2, family = binomial))
## 
## Call:
## glm(formula = SS ~ cond, family = binomial, data = combined2)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.247  -1.111  -1.099   1.246   1.257  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.15928    0.11545  -1.380   0.1677  
## condSS       0.32043    0.15312   2.093   0.0364 *
## condLL      -0.02683    0.15404  -0.174   0.8617  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1507.6  on 1087  degrees of freedom
## Residual deviance: 1500.5  on 1085  degrees of freedom
## AIC: 1506.5
## 
## Number of Fisher Scoring iterations: 3

2. Run nested model, including mean centering beta-delta

library(lme4)
library(pbkrtest)
library(car)
library(lmerTest)
library(afex)

nest.reg2 <- glm(SS ~ bd * cond, contrasts = list(cond = contr.sum), family = "binomial", 
    data = combined2)
table(combined2$cond)
## 
##  no  SS  LL 
## 302 398 388
# what does the cond=contr.sum mean slope would be value of bd is there an
# relationship between reaction time and bd among impatient people in the LL
# condition?

nest.reg2 <- glmer(SS ~ bd + (bd | cond), family = "binomial", data = combined2)
coef(nest.reg2)
## $cond
##     (Intercept)        bd
## no -0.004256083 -3.160553
## SS  0.199603270 -5.156105
## LL -0.208312298 -1.163075
## 
## attr(,"class")
## [1] "coef.mer"
fixef(nest.reg2)
##   (Intercept)            bd 
## -0.0005440959 -3.1968893801
summary(nest.reg2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: SS ~ bd + (bd | cond)
##    Data: combined2
## 
##      AIC      BIC   logLik deviance df.resid 
##   1417.5   1442.4   -703.7   1407.5     1083 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.6901 -0.8643 -0.4522  1.0719  2.3340 
## 
## Random effects:
##  Groups Name        Variance Std.Dev. Corr 
##  cond   (Intercept) 0.03157  0.1777        
##         bd          3.02469  1.7392   -1.00
## Number of obs: 1088, groups:  cond, 3
## 
## Fixed effects:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -0.0005441  0.1216153  -0.004    0.996   
## bd          -3.1968894  1.0773377  -2.967    0.003 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr)
## bd -0.822
anova(nest.reg2)
## Analysis of Variance Table
##    Df Sum Sq Mean Sq F value
## bd  1  8.859   8.859   8.859
confint(nest.reg2)
##                   2.5 %     97.5 %
## .sig01       0.04707627  0.5983397
## .sig02      -1.00415322 -0.3124030
## .sig03       0.75869989  5.4468863
## (Intercept) -0.33216967  0.3356995
## bd          -6.27249659 -0.2762877

3. Re-running basic analyses.

Next we can look at the basic analysis (not nested) that we’ve been using all along, first without excluding outliers.

prop.test(table(combined2$cond, combined2$SS))
## 
##  3-sample test for equality of proportions without continuity
##  correction
## 
## data:  table(combined2$cond, combined2$SS)
## X-squared = 7.1045, df = 2, p-value = 0.02866
## alternative hypothesis: two.sided
## sample estimates:
##    prop 1    prop 2    prop 3 
## 0.5397351 0.4597990 0.5463918
SScontrol<-subset(combined2, cond!="LL")
SScontrol<-droplevels(SScontrol)
SScontrol$bd<-SScontrol$bd - mean(SScontrol$bd)
prop.test(table(SScontrol$cond, SScontrol$SS))
## 
##  2-sample test for equality of proportions with continuity
##  correction
## 
## data:  table(SScontrol$cond, SScontrol$SS)
## X-squared = 4.0753, df = 1, p-value = 0.04351
## alternative hypothesis: two.sided
## 95 percent confidence interval:
##  0.002476825 0.157395383
## sample estimates:
##    prop 1    prop 2 
## 0.5397351 0.4597990
LLcontrol<-subset(combined2, cond!="SS")
LLcontrol<-droplevels(LLcontrol)
LLcontrol$bd<-LLcontrol$bd - mean(LLcontrol$bd)

summary(glm(SS ~ cond * bd, data=SScontrol, family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * bd, family = "binomial", data = SScontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.9784  -1.0328   0.1508   1.1515   1.9788  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.07956    0.12384  -0.642   0.5206    
## condSS       0.29031    0.16669   1.742   0.0816 .  
## bd          -3.27059    0.72535  -4.509 6.51e-06 ***
## condSS:bd   -2.15098    1.09581  -1.963   0.0497 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 970.31  on 699  degrees of freedom
## Residual deviance: 868.13  on 696  degrees of freedom
## AIC: 876.13
## 
## Number of Fisher Scoring iterations: 5
f1<-(glm(SS~cond*bd, data=SScontrol, family="binomial"))
library(visreg)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f1, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  scale="response", xlab="Present Value of LL", ylab="Percent Choosing SS")

LL/control

summary(glm(SS~cond*bd, data=LLcontrol,family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * bd, family = "binomial", data = LLcontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.9784  -1.0523  -0.8936   1.2478   1.9788  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.06415    0.12462  -0.515  0.60672    
## condLL      -0.13867    0.16163  -0.858  0.39093    
## bd          -3.27059    0.72534  -4.509 6.51e-06 ***
## condLL:bd    2.25580    0.85101   2.651  0.00803 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 951.32  on 689  degrees of freedom
## Residual deviance: 916.60  on 686  degrees of freedom
## AIC: 924.6
## 
## Number of Fisher Scoring iterations: 4
f2<-(glm(SS~cond*bd, data=LLcontrol,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f2, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  xlab="Present value of LL", scale="response", ylab="P (choosing SS)")

And all 3 conditions together…

f3<-(glm(SS~cond*bd, data=combined2,family="binomial"))
visreg(f3, "bd", by="cond",  overlay=TRUE, partial=FALSE,  xlab="Present value of LL", scale="response", ylab="P (choosing SS)")

4. Removing outliers.

Let’s check if removing outliers changes things (any bd scores > 4 SDs from mean). The SS / control condition interaction becomes non-significant.

mean(combined2$bd)+(4*(sd(combined2$bd)))
## [1] 0.9223074
mean(combined2$bd)-(4*(sd(combined2$bd)))
## [1] -0.9223074
combined2<-subset(combined2, bd>=-0.9223074)
combined2<-subset(combined2, bd<=0.9223074)

SScontrol<-subset(combined2, cond!="LL")
SScontrol<-droplevels(SScontrol)
SScontrol$bd<-SScontrol$bd - mean(SScontrol$bd)
prop.test(table(SScontrol$cond, SScontrol$SS))
## 
##  2-sample test for equality of proportions with continuity
##  correction
## 
## data:  table(SScontrol$cond, SScontrol$SS)
## X-squared = 3.9721, df = 1, p-value = 0.04626
## alternative hypothesis: two.sided
## 95 percent confidence interval:
##  0.001500071 0.157122484
## sample estimates:
##    prop 1    prop 2 
## 0.5402685 0.4609572
SSLL<-subset(combined2, cond!="no")
SSLL<-droplevels(SSLL)

prop.test(table(SSLL$cond, SSLL$SS))
## 
##  2-sample test for equality of proportions with continuity
##  correction
## 
## data:  table(SSLL$cond, SSLL$SS)
## X-squared = 5.7698, df = 1, p-value = 0.0163
## alternative hypothesis: two.sided
## 95 percent confidence interval:
##  -0.160946 -0.016098
## sample estimates:
##    prop 1    prop 2 
## 0.4609572 0.5494792
LLcontrol<-subset(combined2, cond!="SS")
LLcontrol<-droplevels(LLcontrol)
LLcontrol$bd<-LLcontrol$bd - mean(LLcontrol$bd)
prop.test(table(LLcontrol$cond, LLcontrol$SS))
## 
##  2-sample test for equality of proportions with continuity
##  correction
## 
## data:  table(LLcontrol$cond, LLcontrol$SS)
## X-squared = 0.026273, df = 1, p-value = 0.8712
## alternative hypothesis: two.sided
## 95 percent confidence interval:
##  -0.08754485  0.06912343
## sample estimates:
##    prop 1    prop 2 
## 0.5402685 0.5494792
summary(glm(SS ~ cond * bd, data=SScontrol, family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * bd, family = "binomial", data = SScontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5539  -1.0252   0.1643   1.1261   2.3117  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.02411    0.12934  -0.186    0.852    
## condSS       0.18616    0.16998   1.095    0.273    
## bd          -4.96633    0.90701  -5.476 4.36e-08 ***
## condSS:bd   -0.45480    1.22373  -0.372    0.710    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 963.4  on 694  degrees of freedom
## Residual deviance: 847.7  on 691  degrees of freedom
## AIC: 855.7
## 
## Number of Fisher Scoring iterations: 4
f1<-(glm(SS~cond*bd, data=SScontrol, family="binomial"))
library(visreg)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f1, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  scale="response", xlab="Present Value of LL", ylab="Percent Choosing SS")

while the LL/no default interaction increaes in significance

summary(glm(SS~cond*bd, data=LLcontrol,family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * bd, family = "binomial", data = LLcontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5539  -1.0498  -0.8975   1.2496   2.3117  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.02151    0.12947  -0.166 0.868035    
## condLL      -0.19606    0.16579  -1.183 0.236989    
## bd          -4.96633    0.90701  -5.476 4.36e-08 ***
## condLL:bd    3.98993    1.03030   3.873 0.000108 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 939.81  on 681  degrees of freedom
## Residual deviance: 891.53  on 678  degrees of freedom
## AIC: 899.53
## 
## Number of Fisher Scoring iterations: 4
f2<-(glm(SS~cond*bd, data=LLcontrol,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f2, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  xlab="Present value of LL", scale="response", ylab="P (choosing SS)")

And looking at all 3 conditions together again, with 9 outliers excluded:

f3<-(glm(SS~cond*bd, data=combined2,family="binomial"))
visreg(f3, "bd", by="cond",  overlay=TRUE, partial=FALSE,  xlab="Present value of LL", scale="response", ylab="P (choosing SS)")

5. Using Delta instead of beta-delta.

Here we use delta instead of bd, and see a significant interaction, in the expected direction. People with a high discount rate are nudged towards the SS option - people with a low discount rate are not.

summary(glm(SS ~ cond * delta, data=SScontrol, family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * delta, family = "binomial", data = SScontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2392  -0.9865   0.2961   1.1243   1.8112  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -0.1101     0.1244  -0.885   0.3763    
## condSS         0.4144     0.1706   2.430   0.0151 *  
## delta        302.1355    56.2254   5.374 7.72e-08 ***
## condSS:delta 167.9677    85.1230   1.973   0.0485 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 963.40  on 694  degrees of freedom
## Residual deviance: 848.74  on 691  degrees of freedom
## AIC: 856.74
## 
## Number of Fisher Scoring iterations: 4
f1<-(glm(SS~cond*delta, data=SScontrol, family="binomial"))
library(visreg)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f1, "delta", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  scale="response", xlab="Delta", ylab="Percent Choosing SS")

LL condition - here we see a marginal interaction, in the same counter-intuitive direction as when we use bd. People with high discount rate are nudged AWAY from the SS option; people with low discount rate are nudged TOWARDS it.

summary(glm(SS~cond*delta, data=LLcontrol,family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * delta, family = "binomial", data = LLcontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1403  -1.0052  -0.8889   1.2012   1.8112  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -0.1101     0.1244  -0.885   0.3763    
## condLL         -0.1018     0.1628  -0.625   0.5318    
## delta         302.1355    56.2254   5.374 7.72e-08 ***
## condLL:delta -131.5859    70.3829  -1.870   0.0615 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 939.81  on 681  degrees of freedom
## Residual deviance: 887.98  on 678  degrees of freedom
## AIC: 895.98
## 
## Number of Fisher Scoring iterations: 4
f2<-(glm(SS~cond*delta, data=LLcontrol,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f2, "delta", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  xlab="Delta", scale="response", ylab="P (choosing SS)")

6. Using beta instead.

summary(glm(SS ~ cond * beta, data=SScontrol, family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * beta, family = "binomial", data = SScontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5534  -1.0252   0.1644   1.1265   2.3110  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.05641    0.13389   0.421    0.673    
## condSS       0.19353    0.17515   1.105    0.269    
## beta        -7.44694    1.36035  -5.474 4.39e-08 ***
## condSS:beta -0.68341    1.83550  -0.372    0.710    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 963.40  on 694  degrees of freedom
## Residual deviance: 847.77  on 691  degrees of freedom
## AIC: 855.77
## 
## Number of Fisher Scoring iterations: 4
f1<-(glm(SS~cond*beta, data=SScontrol, family="binomial"))
library(visreg)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f1, "beta", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  scale="response", xlab="Beta", ylab="Percent Choosing SS")

LL condition

summary(glm(SS~cond*beta, data=LLcontrol,family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * beta, family = "binomial", data = LLcontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5534  -1.0499  -0.8974   1.2496   2.3110  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.05641    0.13389   0.421 0.673499    
## condLL      -0.25865    0.16900  -1.530 0.125911    
## beta        -7.44694    1.36035  -5.474 4.39e-08 ***
## condLL:beta  5.98327    1.54536   3.872 0.000108 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 939.81  on 681  degrees of freedom
## Residual deviance: 891.56  on 678  degrees of freedom
## AIC: 899.56
## 
## Number of Fisher Scoring iterations: 4
f2<-(glm(SS~cond*beta, data=LLcontrol,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f2, "beta", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  xlab="Beta", scale="response", ylab="P (choosing SS)")

7. Effect of completion times.

First we can exclude people who were VERY slow - 30 mins or more…this doesn’t change the lack of default effects

combined4<-subset(combined2, interviewtime<2000)

summary(glm(SS~cond*bd, data=combined4, family=binomial))
## 
## Call:
## glm(formula = SS ~ cond * bd, family = binomial, data = combined4)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6181  -1.1044  -0.3407   1.2083   2.3117  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.05648    0.13390   0.422    0.673    
## condSS       0.26963    0.18709   1.441    0.150    
## condLL      -0.14457    0.17763  -0.814    0.416    
## bd          -4.96633    0.90702  -5.475 4.36e-08 ***
## condSS:bd   -0.96072    1.33281  -0.721    0.471    
## condLL:bd    4.47702    1.04749   4.274 1.92e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1258.7  on 907  degrees of freedom
## Residual deviance: 1148.6  on 902  degrees of freedom
## AIC: 1160.6
## 
## Number of Fisher Scoring iterations: 5

Now we can look at completion times as a covariate (the time it took people to choose on the default page, without mean-centering so that we can see actual times). Let’s start by checking for a 3 way interaction between bd, cond, and interview time:

summary(glm(SS~cond*bd*interviewtime, data=combined2, family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * bd * interviewtime, family = "binomial", 
##     data = combined2)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.480  -1.097  -0.236   1.212   2.203  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              0.0748006  0.2024628   0.369  0.71179   
## condSS                   0.6681462  0.3016874   2.215  0.02678 * 
## condLL                  -0.2230693  0.2841749  -0.785  0.43247   
## bd                      -3.9717065  1.5495428  -2.563  0.01037 * 
## interviewtime           -0.0005065  0.0067546  -0.075  0.94023   
## condSS:bd               -7.2864066  2.6570515  -2.742  0.00610 **
## condLL:bd                5.3937463  1.9657086   2.744  0.00607 **
## condSS:interviewtime    -0.0128580  0.0085153  -1.510  0.13105   
## condLL:interviewtime     0.0022399  0.0082771   0.271  0.78668   
## bd:interviewtime        -0.0429422  0.0579180  -0.741  0.45843   
## condSS:bd:interviewtime  0.2201237  0.0807103   2.727  0.00638 **
## condLL:bd:interviewtime -0.0174593  0.0678091  -0.257  0.79681   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1260.1  on 908  degrees of freedom
## Residual deviance: 1134.5  on 897  degrees of freedom
##   (170 observations deleted due to missingness)
## AIC: 1158.5
## 
## Number of Fisher Scoring iterations: 6

One way to break down the significant 3 way interaction above is by checking whether the cond*bd interaction depends on reaction time. We can separate the sample into fast, medium, and slow responders (dividing the data into thirds. Alternate splits based on quartiles also follow).

summary(combined4$interviewtime)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    2.71   17.39   24.37   30.54   33.66  500.30
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:gdata':
## 
##     combine, first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
combined4$thirds<-ntile(combined4$interviewtime, 3)
fast<-subset(combined4, thirds==3)
summary(fast$interviewtime)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   30.09   33.76   40.12   52.74   51.50  500.30
med<-subset(combined4, thirds==2)
summary(med$interviewtime)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   19.76   22.02   24.37   24.56   26.83   30.09
slow<-subset(combined4,thirds==1)
summary(slow$interviewtime)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    2.71   12.07   14.93   14.38   17.38   19.70
summary(lm(SS ~ cond * bd, data=fast))
## 
## Call:
## lm(formula = SS ~ cond * bd, data = fast)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8187 -0.4616 -0.1979  0.5218  0.7305 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.54439    0.06398   8.509 8.91e-16 ***
## condSS      -0.01876    0.07971  -0.235  0.81410    
## condLL      -0.07315    0.07698  -0.950  0.34277    
## bd          -1.05796    0.33179  -3.189  0.00158 ** 
## condSS:bd    0.49173    0.41650   1.181  0.23870    
## condLL:bd    0.94271    0.37731   2.499  0.01301 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4917 on 296 degrees of freedom
## Multiple R-squared:  0.05203,    Adjusted R-squared:  0.03602 
## F-statistic: 3.249 on 5 and 296 DF,  p-value: 0.007149
summary(lm(SS ~ cond * bd, data=med))
## 
## Call:
## lm(formula = SS ~ cond * bd, data = med)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8282 -0.4575 -0.1840  0.4819  0.8459 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.41451    0.05388   7.693 2.14e-13 ***
## condSS       0.13417    0.06902   1.944   0.0528 .  
## condLL       0.10560    0.07122   1.483   0.1392    
## bd          -1.00303    0.29608  -3.388   0.0008 ***
## condSS:bd   -0.05978    0.36399  -0.164   0.8697    
## condLL:bd    0.86259    0.37458   2.303   0.0220 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4703 on 297 degrees of freedom
## Multiple R-squared:  0.1326, Adjusted R-squared:  0.118 
## F-statistic: 9.082 on 5 and 297 DF,  p-value: 4.739e-08
summary(lm(SS ~ cond * bd, data=slow))
## 
## Call:
## lm(formula = SS ~ cond * bd, data = slow)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.04074 -0.42283 -0.07357  0.51884  0.91628 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.52043    0.03804  13.681  < 2e-16 ***
## condSS       0.05536    0.06243   0.887   0.3759    
## condLL      -0.10059    0.07218  -1.394   0.1645    
## bd          -0.81628    0.17999  -4.535 8.36e-06 ***
## condSS:bd   -0.32504    0.28319  -1.148   0.2520    
## condLL:bd    0.74295    0.32764   2.268   0.0241 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4663 on 297 degrees of freedom
## Multiple R-squared:  0.1475, Adjusted R-squared:  0.1332 
## F-statistic: 10.28 on 5 and 297 DF,  p-value: 4.206e-09
SScontrolM<-subset(med, cond!="LL")
summary(lm(SS~cond*bd, data=SScontrolM))
## 
## Call:
## lm(formula = SS ~ cond * bd, data = SScontrolM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8282 -0.4014 -0.1932  0.4307  0.8459 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.41451    0.05183   7.998 1.06e-13 ***
## condSS       0.13417    0.06638   2.021 0.044621 *  
## bd          -1.00303    0.28478  -3.522 0.000532 ***
## condSS:bd   -0.05978    0.35010  -0.171 0.864592    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4523 on 197 degrees of freedom
## Multiple R-squared:  0.1962, Adjusted R-squared:  0.184 
## F-statistic: 16.03 on 3 and 197 DF,  p-value: 2.297e-09
LLcontrolM<-subset(med, cond!="SS")
summary(lm(SS~cond*bd, data=LLcontrolM))
## 
## Call:
## lm(formula = SS ~ cond * bd, data = LLcontrolM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8282 -0.5006 -0.2772  0.4891  0.8459 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.41451    0.05526   7.502 2.79e-12 ***
## condLL       0.10560    0.07304   1.446  0.14997    
## bd          -1.00303    0.30362  -3.304  0.00115 ** 
## condLL:bd    0.86259    0.38413   2.246  0.02595 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4823 on 180 degrees of freedom
## Multiple R-squared:  0.08112,    Adjusted R-squared:  0.0658 
## F-statistic: 5.297 on 3 and 180 DF,  p-value: 0.0016
n1<-lm(SS~cond*bd, data=LLcontrolM)
library(visreg)
visreg(n1, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  xlab="Present value of LL", scale="response", ylab="P (choosing SS)")

SScontrolS<-subset(slow, cond!="LL")
summary(lm(SS~cond*bd, data=SScontrolS))
## 
## Call:
## lm(formula = SS ~ cond * bd, data = SScontrolS)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.04074 -0.42897  0.02014  0.46884  0.91628 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.52043    0.03732  13.946  < 2e-16 ***
## condSS       0.05536    0.06124   0.904    0.367    
## bd          -0.81628    0.17656  -4.623 6.19e-06 ***
## condSS:bd   -0.32504    0.27780  -1.170    0.243    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4574 on 239 degrees of freedom
## Multiple R-squared:  0.1757, Adjusted R-squared:  0.1654 
## F-statistic: 16.98 on 3 and 239 DF,  p-value: 4.947e-10
LLcontrolS<-subset(slow, cond!="SS")
summary(lm(SS~cond*bd, data=LLcontrolS))
## 
## Call:
## lm(formula = SS ~ cond * bd, data = LLcontrolS)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0407 -0.4152 -0.2501  0.5470  0.9163 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.52043    0.03924  13.262  < 2e-16 ***
## condLL      -0.10059    0.07447  -1.351    0.178    
## bd          -0.81628    0.18567  -4.396 1.75e-05 ***
## condLL:bd    0.74295    0.33799   2.198    0.029 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.481 on 210 degrees of freedom
## Multiple R-squared:  0.08892,    Adjusted R-squared:  0.07591 
## F-statistic: 6.832 on 3 and 210 DF,  p-value: 0.0002051
fast<-subset(combined2, interviewtime<= 17.39)
slow<-subset(combined2, interviewtime>33.73 & interviewtime<2000)

summary(glm(SS~bd*cond, data=fast, family=binomial))
## 
## Call:
## glm(formula = SS ~ bd * cond, family = binomial, data = fast)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.25786  -1.04619   0.00243   1.17360   1.95772  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   0.1737     0.1933   0.898  0.36908   
## bd           -3.5988     1.1397  -3.158  0.00159 **
## condSS        1.2807     0.6983   1.834  0.06665 . 
## condLL       -0.6914     0.3813  -1.813  0.06976 . 
## bd:condSS   -11.9786     6.0350  -1.985  0.04716 * 
## bd:condLL     4.2548     1.8994   2.240  0.02509 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 316.06  on 227  degrees of freedom
## Residual deviance: 270.55  on 222  degrees of freedom
## AIC: 282.55
## 
## Number of Fisher Scoring iterations: 7

Note that we DO see marginal default effects here!

Plotting the 2 way interaction between SS condition and bd among fast responders, we see the same pattern as in the data overall:

SSconf<-subset(fast, cond!="LL")
SSconf<-droplevels(SSconf)
f1<-(glm(SS~cond*bd, data=SSconf,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f1, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  xlab="Present Value of LL", scale="response", ylab="P (choosing SS)")

And there was an interaction between LL condition and bd among fast responders so we can plot that too - the LL condition here only has 42 people however.

LLconf<-subset(fast, cond!="SS")
LLconf<-droplevels(LLconf)

f1<-(glm(SS~cond*bd, data=LLconf,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f1, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  xlab="Present Value of LL", scale="response", ylab="P (choosing SS)")

However, the default effects among fast responders are not robust to alternative definitions of “fast” - i.e. if we take only people who are a few seconds faster than the first quartile, we no longer see the effects:

fast<-subset(combined2, interviewtime<= 14.39)

summary(glm(SS~bd*cond, data=fast, family=binomial))
## 
## Call:
## glm(formula = SS ~ bd * cond, family = binomial, data = fast)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8780  -1.0722   0.1185   1.0394   2.1299  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   0.3992     0.2494   1.600  0.10956   
## bd           -4.7818     1.7279  -2.767  0.00565 **
## condSS        1.0817     0.8116   1.333  0.18261   
## condLL       -1.0466     0.5791  -1.807  0.07072 . 
## bd:condSS    -8.5882     6.6177  -1.298  0.19437   
## bd:condLL     5.9257     2.7627   2.145  0.03196 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 187.09  on 135  degrees of freedom
## Residual deviance: 154.38  on 130  degrees of freedom
## AIC: 166.38
## 
## Number of Fisher Scoring iterations: 7

Next let’s look at slow responders.

summary(glm(SS~bd*cond, data=slow, family=binomial))
## 
## Call:
## glm(formula = SS ~ bd * cond, family = binomial, data = slow)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.90784  -1.08575  -0.02704   1.18098   1.61243  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.5078     0.3681   1.379    0.168  
## bd           -6.0262     2.6319  -2.290    0.022 *
## condSS       -0.5142     0.4368  -1.177    0.239  
## condLL       -0.5668     0.4199  -1.350    0.177  
## bd:condSS     3.5554     3.0129   1.180    0.238  
## bd:condLL     4.1117     2.8193   1.458    0.145  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 313.3  on 225  degrees of freedom
## Residual deviance: 297.6  on 220  degrees of freedom
## AIC: 309.6
## 
## Number of Fisher Scoring iterations: 4

No default effects or interactions there.

As another approach, we can also break down the significant 3 way interaction between condition, beta-delta, and completion time, by looking for 2 way interactions between beta-delta and completion times in each of the conditions individually. First, we see no 2-way interaction in the no default condition:

no<-subset(combined2, cond=="no")
summary(glm(SS~bd*interviewtime, data=no, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd * interviewtime, family = "binomial", data = no)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4797  -0.9953  -0.6797   1.1360   2.2026  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)       0.0748006  0.2024501   0.369   0.7118  
## bd               -3.9717067  1.5493198  -2.564   0.0104 *
## interviewtime    -0.0005065  0.0067534  -0.075   0.9402  
## bd:interviewtime -0.0429422  0.0579007  -0.742   0.4583  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 411.18  on 297  degrees of freedom
## Residual deviance: 365.83  on 294  degrees of freedom
## AIC: 373.83
## 
## Number of Fisher Scoring iterations: 4

But we do see a 2-way in the SS default condition

SS<-subset(combined2, cond=="SS")
summary(glm(SS~bd*interviewtime, data=SS, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd * interviewtime, family = "binomial", data = SS)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4244  -1.0412   0.2888   1.0638   1.8046  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        0.742947   0.223659   3.322 0.000894 ***
## bd               -11.258113   2.158409  -5.216 1.83e-07 ***
## interviewtime     -0.013365   0.005185  -2.577 0.009952 ** 
## bd:interviewtime   0.177181   0.056210   3.152 0.001621 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 434.01  on 314  degrees of freedom
## Residual deviance: 364.55  on 311  degrees of freedom
##   (82 observations deleted due to missingness)
## AIC: 372.55
## 
## Number of Fisher Scoring iterations: 5

We can break this down further by checking whether the effect of beta-delta on choice of SS depends on reaction time. It does indeed - beta-delta only seems to have a significant effect on choice when people choose relatively quickly - here, in the first quartile of reaction time. people in the 3rd quartile of reaction time don’t show this expected effect (it’s marginally significant).

fast<-subset(SS, interviewtime<= 19.02)
slow<-subset(SS, interviewtime>33.54)

summary(glm(SS~bd, data=fast, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd, family = "binomial", data = fast)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6649  -0.9409   0.1139   0.8010   1.8712  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.7132     0.3365   2.119 0.034080 *  
## bd           -9.9466     2.7544  -3.611 0.000305 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 108.490  on 78  degrees of freedom
## Residual deviance:  76.948  on 77  degrees of freedom
## AIC: 80.948
## 
## Number of Fisher Scoring iterations: 6
summary(glm(SS~bd, data=slow, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd, family = "binomial", data = slow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7671  -1.0953  -0.8303   1.2441   1.4060  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.02094    0.23379    0.09   0.9286  
## bd          -2.52071    1.48288   -1.70   0.0892 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 109.50  on 78  degrees of freedom
## Residual deviance: 105.94  on 77  degrees of freedom
## AIC: 109.94
## 
## Number of Fisher Scoring iterations: 4

And in the LL condition? The is no sigificant interaction between beta-delta and completion time.

LL<-subset(combined2, cond=="LL")
summary(glm(SS~bd*interviewtime, data=LL, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd * interviewtime, family = "binomial", data = LL)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.445  -1.136  -0.976   1.221   1.487  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      -0.148269   0.199410  -0.744   0.4572  
## bd                1.422040   1.209515   1.176   0.2397  
## interviewtime     0.001733   0.004784   0.362   0.7171  
## bd:interviewtime -0.060402   0.035264  -1.713   0.0867 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 409.68  on 295  degrees of freedom
## Residual deviance: 404.13  on 292  degrees of freedom
##   (88 observations deleted due to missingness)
## AIC: 412.13
## 
## Number of Fisher Scoring iterations: 6

We can also treat completion time as a DV:

summary(lm(interviewtime~cond*bd, data=combined2))
## 
## Call:
## lm(formula = interviewtime ~ cond * bd, data = combined2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
##  -36.28  -14.61   -8.00    1.24 2243.10 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  25.0414     4.8134   5.202 2.43e-07 ***
## condSS        7.2103     6.6521   1.084   0.2787    
## condLL       16.7555     6.7528   2.481   0.0133 *  
## bd            0.9544    24.0867   0.040   0.9684    
## condSS:bd     6.1261    32.8465   0.187   0.8521    
## condLL:bd    11.5569    32.0873   0.360   0.7188    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 81.48 on 903 degrees of freedom
##   (170 observations deleted due to missingness)
## Multiple R-squared:  0.007419,   Adjusted R-squared:  0.001923 
## F-statistic:  1.35 on 5 and 903 DF,  p-value: 0.2411

Less patient people are not faster in their completion time

summary(lm(interviewtime~bd, data=combined2))
## 
## Call:
## lm(formula = interviewtime ~ bd, data = combined2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
##  -30.26  -15.75   -8.58    1.40 2252.59 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   32.948      2.713  12.146   <2e-16 ***
## bd             4.994     12.933   0.386    0.699    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 81.6 on 907 degrees of freedom
##   (170 observations deleted due to missingness)
## Multiple R-squared:  0.0001644,  Adjusted R-squared:  -0.000938 
## F-statistic: 0.1491 on 1 and 907 DF,  p-value: 0.6995

Reaction time does not correlate with attention check failure.

combined2$attn[combined2$reader == "reader" | combined2$reader == "Reader"|combined2$reader == "READER"|combined2$reader== " reader"|combined2$reader== "reader " | combined2$reader== "readers"]<-1
combined2$attn[combined2$reader != "reader"]<-0
table(combined2$attn)
## 
##   0   1 
## 291 788
cor.test(combined2$attn, combined2$interviewtime)
## 
##  Pearson's product-moment correlation
## 
## data:  combined2$attn and combined2$interviewtime
## t = 1.427, df = 907, p-value = 0.1539
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.01774857  0.11200848
## sample estimates:
##        cor 
## 0.04732962

And attention check failure doesn’t interact with default condition or bd.

summary(glm(SS~bd*cond*attn, data=combined2, family=binomial))
## 
## Call:
## glm(formula = SS ~ bd * cond * attn, family = binomial, data = combined2)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4880  -1.0420  -0.5422   1.2268   2.1744  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     0.17267    0.29443   0.586  0.55757   
## bd             -7.92819    2.46984  -3.210  0.00133 **
## condSS          0.07361    0.36841   0.200  0.84162   
## condLL         -0.25019    0.35071  -0.713  0.47560   
## attn           -0.14415    0.33127  -0.435  0.66346   
## bd:condSS       2.13205    2.94342   0.724  0.46885   
## bd:condLL       7.09958    2.60234   2.728  0.00637 **
## bd:attn         3.64086    2.65709   1.370  0.17061   
## condSS:attn     0.14689    0.41960   0.350  0.72628   
## condLL:attn    -0.03095    0.40153  -0.077  0.93855   
## bd:condSS:attn -3.12908    3.24641  -0.964  0.33512   
## bd:condLL:attn -3.82449    2.84714  -1.343  0.17918   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1494.9  on 1078  degrees of freedom
## Residual deviance: 1369.3  on 1067  degrees of freedom
## AIC: 1393.3
## 
## Number of Fisher Scoring iterations: 5

Is there a relationship between reaction time and beta delta among impatient people in the LL condition?

LL<-subset(LLcontrol, cond=="LL")
LLimp<-subset(LL, bd< -0.1)
cor.test(LLimp$bd, LLimp$interviewtime)
## 
##  Pearson's product-moment correlation
## 
## data:  LLimp$bd and LLimp$interviewtime
## t = 0.28708, df = 61, p-value = 0.775
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2129708  0.2819316
## sample estimates:
##        cor 
## 0.03673248

8. Reactance data.

Next we can look at the reactance data. Beta-delta doesn’t seem to predict reactance in either the LL or the SS conditions.

debrief<-read.csv("debrief data from ls.csv", header=T, sep=",")
combined3<-merge(debrief, combined2, by="mturkID")
combined3<-combined3[!duplicated(combined3$mturkID),]
combined3$rep[combined3$Wave==4]<-1
combined3$rep[combined3$Wave!=4]<-0
react<-read.csv("reactance data.csv", header=T, sep=",")
react$serial.y<-react$serial
react<-merge(react, combined3, by="serial.y")

react$reactance<-(react$hong8+react$hong9+react$hong11+react$hong13)/4
react$reactance<-react$reactance-mean(react$reactance)
summary(lm(reactance~cond*bd, data=react))
## 
## Call:
## lm(formula = reactance ~ cond * bd, data = react)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.26155 -0.40261 -0.07246  0.38586  2.15111 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.012244   0.046259  -0.265   0.7914  
## condSS       0.040178   0.063393   0.634   0.5265  
## condLL       0.003027   0.065066   0.047   0.9629  
## bd          -0.325190   0.245544  -1.324   0.1859  
## condSS:bd    0.500902   0.312513   1.603   0.1095  
## condLL:bd    0.550672   0.328357   1.677   0.0941 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6356 on 600 degrees of freedom
## Multiple R-squared:  0.007243,   Adjusted R-squared:  -0.00103 
## F-statistic: 0.8755 on 5 and 600 DF,  p-value: 0.4971
LL<-subset(react, cond=="LL")
summary(lm(reactance~bd, data=LL))
## 
## Call:
## lm(formula = reactance ~ bd, data = LL)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.13292 -0.36268 -0.07573  0.38909  1.92276 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.009217   0.044328  -0.208    0.836
## bd           0.225481   0.211199   1.068    0.287
## 
## Residual standard error: 0.6157 on 192 degrees of freedom
## Multiple R-squared:  0.005902,   Adjusted R-squared:  0.0007239 
## F-statistic:  1.14 on 1 and 192 DF,  p-value: 0.287
SS<-subset(react, cond=="SS")
summary(lm(reactance~bd, data=SS))
## 
## Call:
## lm(formula = reactance ~ bd, data = SS)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1544 -0.3836 -0.1052  0.3654  2.1328 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  0.02793    0.04248   0.658    0.512
## bd           0.17571    0.18946   0.927    0.355
## 
## Residual standard error: 0.6229 on 213 degrees of freedom
## Multiple R-squared:  0.004022,   Adjusted R-squared:  -0.0006542 
## F-statistic: 0.8601 on 1 and 213 DF,  p-value: 0.3548

And reactance only predicts choice in the SS condition

summary(glm(SS~reactance, data=LL, family="binomial"))
## 
## Call:
## glm(formula = SS ~ reactance, family = "binomial", data = LL)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.082  -1.035  -1.000   1.314   1.430  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.3553     0.1460  -2.434   0.0149 *
## reactance    -0.1163     0.2385  -0.487   0.6260  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 262.95  on 193  degrees of freedom
## Residual deviance: 262.71  on 192  degrees of freedom
## AIC: 266.71
## 
## Number of Fisher Scoring iterations: 4
summary(glm(SS~reactance, data=SS, family="binomial"))
## 
## Call:
## glm(formula = SS ~ reactance, family = "binomial", data = SS)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4354  -1.2218   0.9397   1.1337   1.6150  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.05979    0.13804   0.433   0.6649  
## reactance   -0.48497    0.22852  -2.122   0.0338 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 297.94  on 214  degrees of freedom
## Residual deviance: 293.25  on 213  degrees of freedom
## AIC: 297.25
## 
## Number of Fisher Scoring iterations: 4

Reactance does not correlate wtih familiarity with default studies.

react$defaultstudies.x<-as.numeric(react$defaultstudies.x)
cor.test(react$defaultstudies.x, react$reactance)
## 
##  Pearson's product-moment correlation
## 
## data:  react$defaultstudies.x and react$reactance
## t = 0.10728, df = 604, p-value = 0.9146
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.07530774  0.08398293
## sample estimates:
##         cor 
## 0.004365283

Does reactance predict or correlate with anything among patient people?

summary(react$bd)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.80880 -0.06133  0.08501  0.01732  0.13430  0.53790
react$bd<-react$bd-mean(react$bd)
patient<-subset(react, bd>0)
summary(lm(reactance~cond, data=patient))
## 
## Call:
## lm(formula = reactance ~ cond, data = patient)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.12195 -0.49457 -0.08991  0.37805  1.87805 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.09619    0.05173  -1.860   0.0637 .
## condSS       0.12739    0.07535   1.691   0.0918 .
## condLL       0.09535    0.07691   1.240   0.2159  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6077 on 372 degrees of freedom
## Multiple R-squared:  0.008333,   Adjusted R-squared:  0.003001 
## F-statistic: 1.563 on 2 and 372 DF,  p-value: 0.2109
cor.test(patient$reactance, patient$SS)
## 
##  Pearson's product-moment correlation
## 
## data:  patient$reactance and patient$SS
## t = -0.10718, df = 373, p-value = 0.9147
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1067604  0.0957755
## sample estimates:
##          cor 
## -0.005549373
cor.test(patient$reactance, patient$bd)
## 
##  Pearson's product-moment correlation
## 
## data:  patient$reactance and patient$bd
## t = 1.1209, df = 373, p-value = 0.2631
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.04358638  0.15828272
## sample estimates:
##        cor 
## 0.05794042

9. Default channels.

We can also check whether any of the “default channels” are affected by default condition, beta-delta, or their interaction. First, direct implied endorsement:

SScontrol<-subset(react, cond!="LL")
SScontrol<-droplevels(SScontrol)
LLcontrol<-subset(react, cond!="SS")
LLcontrol<-droplevels(LLcontrol)
summary(lm(directIE~bd*cond, data=SScontrol))
## 
## Call:
## lm(formula = directIE ~ bd * cond, data = SScontrol)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8643 -0.5211 -0.3856  0.4491  3.6452 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.43003    0.06287  22.744   <2e-16 ***
## bd          -0.65064    0.33871  -1.921   0.0554 .  
## condSS       0.10942    0.08690   1.259   0.2087    
## bd:condSS    0.38516    0.43109   0.893   0.3721    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8767 on 408 degrees of freedom
## Multiple R-squared:  0.01656,    Adjusted R-squared:  0.009329 
## F-statistic:  2.29 on 3 and 408 DF,  p-value: 0.07781
summary(lm(directIE~bd*cond, data=LLcontrol))
## 
## Call:
## lm(formula = directIE ~ bd * cond, data = LLcontrol)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8643 -0.6134 -0.3818  0.3808  3.6452 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.43003    0.06337  22.566   <2e-16 ***
## bd          -0.65064    0.34138  -1.906   0.0574 .  
## condLL       0.19860    0.08967   2.215   0.0274 *  
## bd:condLL    0.52075    0.45651   1.141   0.2547    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8836 on 387 degrees of freedom
## Multiple R-squared:  0.0239, Adjusted R-squared:  0.01633 
## F-statistic: 3.159 on 3 and 387 DF,  p-value: 0.02472
summary(aov(SS ~ directIE * cond, data=react))
##                Df Sum Sq Mean Sq F value  Pr(>F)   
## directIE        1   1.98  1.9802   8.148 0.00446 **
## cond            2   1.22  0.6087   2.505 0.08256 . 
## directIE:cond   2   1.09  0.5452   2.243 0.10701   
## Residuals     600 145.82  0.2430                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ indirectIE * cond, data=react))
##                  Df Sum Sq Mean Sq F value Pr(>F)  
## indirectIE        1   1.43  1.4306   5.824 0.0161 *
## cond              2   1.07  0.5333   2.171 0.1149  
## indirectIE:cond   2   0.25  0.1232   0.502 0.6058  
## Residuals       600 147.37  0.2456                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ ease * cond , data=react))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## ease          1   9.50   9.504  41.005 3.07e-10 ***
## cond          2   1.15   0.575   2.481   0.0845 .  
## ease:cond     2   0.38   0.192   0.830   0.4367    
## Residuals   600 139.07   0.232                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ refdep * cond , data=react))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## refdep        1   6.30   6.304  27.744 1.93e-07 ***
## cond          2   0.92   0.460   2.024    0.133    
## refdep:cond   2   6.57   3.283  14.450 7.43e-07 ***
## Residuals   600 136.32   0.227                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
table(react$refdep)
## 
##   1   2   3   4   5 
## 368  96  67  42  33
lowRD<-subset(react, refdep==1)
hiRD<-subset(react, refdep>1)

summary(aov(SS ~ cond, data=lowRD))
##              Df Sum Sq Mean Sq F value Pr(>F)
## cond          2   0.11 0.05304   0.222  0.801
## Residuals   365  87.33 0.23925
summary(aov(SS ~ cond, data=hiRD))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## cond          2   4.14   2.070   8.884 0.000191 ***
## Residuals   235  54.75   0.233                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ directIE * cond * bd, data=react))
##                   Df Sum Sq Mean Sq F value  Pr(>F)    
## directIE           1   1.98   1.980   9.480 0.00217 ** 
## cond               2   1.22   0.609   2.914 0.05502 .  
## bd                 1  19.02  19.023  91.069 < 2e-16 ***
## directIE:cond      2   1.28   0.641   3.071 0.04713 *  
## directIE:bd        1   1.56   1.560   7.469 0.00646 ** 
## cond:bd            2   0.59   0.293   1.404 0.24639    
## directIE:cond:bd   2   0.39   0.194   0.927 0.39619    
## Residuals        594 124.08   0.209                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ indirectIE * cond * bd, data=react))
##                     Df Sum Sq Mean Sq F value  Pr(>F)    
## indirectIE           1   1.43   1.431   6.699 0.00988 ** 
## cond                 2   1.07   0.533   2.497 0.08319 .  
## bd                   1  19.33  19.334  90.531 < 2e-16 ***
## indirectIE:cond      2   0.40   0.200   0.938 0.39193    
## indirectIE:bd        1   0.29   0.292   1.367 0.24279    
## cond:bd              2   0.69   0.346   1.622 0.19834    
## indirectIE:cond:bd   2   0.04   0.021   0.100 0.90514    
## Residuals          594 126.85   0.214                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ ease * cond * bd, data=react))
##               Df Sum Sq Mean Sq F value  Pr(>F)    
## ease           1   9.50   9.504  46.372 2.4e-11 ***
## cond           2   1.15   0.575   2.806  0.0613 .  
## bd             1  15.95  15.949  77.816 < 2e-16 ***
## ease:cond      2   0.56   0.282   1.374  0.2538    
## ease:bd        1   0.35   0.347   1.692  0.1938    
## cond:bd        2   0.71   0.355   1.733  0.1777    
## ease:cond:bd   2   0.14   0.070   0.340  0.7119    
## Residuals    594 121.75   0.205                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ refdep * cond * bd, data=react))
##                 Df Sum Sq Mean Sq F value   Pr(>F)    
## refdep           1   6.30   6.304  31.540    3e-08 ***
## cond             2   0.92   0.460   2.301 0.101093    
## bd               1  17.26  17.257  86.342  < 2e-16 ***
## refdep:cond      2   3.68   1.840   9.207 0.000115 ***
## refdep:bd        1   2.16   2.163  10.822 0.001062 ** 
## cond:bd          2   0.49   0.247   1.234 0.291809    
## refdep:cond:bd   2   0.58   0.289   1.445 0.236537    
## Residuals      594 118.72   0.200                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ cond*bd, data=lowRD))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## cond          2   0.11   0.053   0.261    0.770    
## bd            1  12.98  12.979  63.883 1.79e-14 ***
## cond:bd       2   0.80   0.400   1.967    0.141    
## Residuals   362  73.55   0.203                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(SS ~ cond*bd, data=hiRD))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## cond          2   4.14   2.070   9.613 9.75e-05 ***
## bd            1   4.33   4.335  20.131 1.14e-05 ***
## cond:bd       2   0.46   0.232   1.077    0.342    
## Residuals   232  49.96   0.215                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
veryhiRD<-subset(react, refdep>2)
summary(aov(SS ~ cond*bd, data=veryhiRD))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## cond          2  7.658   3.829  22.601 3.35e-09 ***
## bd            1  0.978   0.978   5.773   0.0176 *  
## cond:bd       2  0.718   0.359   2.120   0.1240    
## Residuals   136 23.040   0.169                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Then indirect IE:

summary(lm(indirectIE~bd*cond, data=SScontrol))
## 
## Call:
## lm(formula = indirectIE ~ bd * cond, data = SScontrol)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9902 -0.6830 -0.5273  0.3859  3.3303 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.57849    0.07352  21.469   <2e-16 ***
## bd          -0.70967    0.39608  -1.792   0.0739 .  
## condSS       0.12369    0.10161   1.217   0.2242    
## bd:condSS    0.44050    0.50411   0.874   0.3827    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.025 on 408 degrees of freedom
## Multiple R-squared:  0.01442,    Adjusted R-squared:  0.007175 
## F-statistic:  1.99 on 3 and 408 DF,  p-value: 0.1149
summary(lm(indirectIE~bd*cond, data=LLcontrol))
## 
## Call:
## lm(formula = indirectIE ~ bd * cond, data = LLcontrol)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9902 -0.6181 -0.5063  0.3993  3.3670 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.57849    0.06427  24.560   <2e-16 ***
## bd          -0.70967    0.34623  -2.050   0.0411 *  
## condLL       0.04020    0.09094   0.442   0.6587    
## bd:condLL    0.78401    0.46300   1.693   0.0912 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8962 on 387 degrees of freedom
## Multiple R-squared:  0.01182,    Adjusted R-squared:  0.004161 
## F-statistic: 1.543 on 3 and 387 DF,  p-value: 0.2029

Only effects of beta-delta so far. Ease?

summary(lm(ease~bd*cond, data=SScontrol))
## 
## Call:
## lm(formula = ease ~ bd * cond, data = SScontrol)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1339 -1.0656 -0.3200  0.9715  3.0324 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.22091    0.09444  23.516  < 2e-16 ***
## bd          -1.32174    0.50876  -2.598  0.00972 ** 
## condSS      -0.10806    0.13052  -0.828  0.40821    
## bd:condSS    0.08579    0.64752   0.132  0.89466    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.317 on 408 degrees of freedom
## Multiple R-squared:  0.0388, Adjusted R-squared:  0.03173 
## F-statistic:  5.49 on 3 and 408 DF,  p-value: 0.001049
summary(lm(ease~bd*cond, data=LLcontrol))
## 
## Call:
## lm(formula = ease ~ bd * cond, data = LLcontrol)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9877 -1.0664 -0.2654  0.9185  3.3121 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.22091    0.09438  23.532  < 2e-16 ***
## bd          -1.32174    0.50843  -2.600  0.00969 ** 
## condLL      -0.17060    0.13355  -1.277  0.20221    
## bd:condLL    0.61714    0.67990   0.908  0.36460    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.316 on 387 degrees of freedom
## Multiple R-squared:  0.02598,    Adjusted R-squared:  0.01843 
## F-statistic: 3.441 on 3 and 387 DF,  p-value: 0.01694

Still only effects of beta-delta. Reference dependence measure mentions “the option that I was assigned,” so it doesn’t make sense to look at that measure in the no default control condition.

summary(lm(refdep~bd, data=SS))  
## 
## Call:
## lm(formula = refdep ~ bd, data = SS)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1082 -0.7803 -0.6839  0.6242  3.3049 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.93397    0.08663  22.325  < 2e-16 ***
## bd          -1.81004    0.38637  -4.685 4.99e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.27 on 213 degrees of freedom
## Multiple R-squared:  0.09341,    Adjusted R-squared:  0.08916 
## F-statistic: 21.95 on 1 and 213 DF,  p-value: 4.994e-06
summary(lm(refdep~bd, data=LL))
## 
## Call:
## lm(formula = refdep ~ bd, data = LL)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0853 -0.8999 -0.7846  0.2398  3.1521 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.86471    0.09064  20.573   <2e-16 ***
## bd           0.41307    0.43185   0.957     0.34    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.259 on 192 degrees of freedom
## Multiple R-squared:  0.004743,   Adjusted R-squared:  -0.0004409 
## F-statistic: 0.9149 on 1 and 192 DF,  p-value: 0.34

10. Wave / Replication.

Let’s check if wave # interacts with anything:

combined2$rep[combined2$Wave==4]<-1
combined2$rep[combined2$Wave!=4]<-0
SScontrol<-subset(combined2, cond!="LL")
SScontrol<-droplevels(SScontrol)
LLcontrol<-subset(combined2, cond!="SS")
LLcontrol<-droplevels(LLcontrol)

summary(glm(SS ~ cond * bd*rep, data=combined2, family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * bd * rep, family = "binomial", data = combined2)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6315  -1.0574  -0.5146   1.1613   2.0404  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    0.11165    0.22557   0.495  0.62062   
## condSS         0.24884    0.28057   0.887  0.37511   
## condLL        -0.12655    0.26904  -0.470  0.63808   
## bd            -3.21585    1.26537  -2.541  0.01104 * 
## rep           -0.05319    0.28270  -0.188  0.85077   
## condSS:bd     -2.57878    1.84555  -1.397  0.16233   
## condLL:bd      4.03081    1.44031   2.799  0.00513 **
## condSS:rep    -0.15443    0.36246  -0.426  0.67005   
## condLL:rep    -0.25965    0.35300  -0.736  0.46200   
## bd:rep        -2.95724    1.77857  -1.663  0.09637 . 
## condSS:bd:rep  3.60552    2.45547   1.468  0.14201   
## condLL:bd:rep -0.90584    2.07897  -0.436  0.66304   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1494.9  on 1078  degrees of freedom
## Residual deviance: 1351.7  on 1067  degrees of freedom
## AIC: 1375.7
## 
## Number of Fisher Scoring iterations: 4

So it does in the LL/no default conditions. In the “replication” wave, where we ran all 3 conditions at once, we don’t see a significant interaction between BD and condition. We do in the original wave. I think this should decrease our confidence in the results, and encourage a large scale replicaiton.

rep<-subset(combined2, Wave==4)
summary(glm(SS~bd*cond, data=rep, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd * cond, family = "binomial", data = rep)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3979  -0.9583  -0.7840   1.1290   2.0404  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.05847    0.17040   0.343   0.7315    
## bd          -6.17309    1.24985  -4.939 7.85e-07 ***
## condSS       0.09441    0.22948   0.411   0.6808    
## condLL      -0.38621    0.22853  -1.690   0.0910 .  
## bd:condSS    1.02674    1.61965   0.634   0.5261    
## bd:condLL    3.12497    1.49921   2.084   0.0371 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 848.34  on 614  degrees of freedom
## Residual deviance: 749.14  on 609  degrees of freedom
## AIC: 761.14
## 
## Number of Fisher Scoring iterations: 4
not<-subset(combined2, Wave!=4)
summary(glm(SS~bd*cond, data=not, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd * cond, family = "binomial", data = not)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6315  -1.1449   0.4483   1.1661   1.8927  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   0.1117     0.2256   0.495  0.62062   
## bd           -3.2159     1.2654  -2.541  0.01104 * 
## condSS        0.2488     0.2806   0.887  0.37511   
## condLL       -0.1266     0.2690  -0.470  0.63808   
## bd:condSS    -2.5788     1.8456  -1.397  0.16233   
## bd:condLL     4.0308     1.4403   2.799  0.00513 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 642.38  on 463  degrees of freedom
## Residual deviance: 602.61  on 458  degrees of freedom
## AIC: 614.61
## 
## Number of Fisher Scoring iterations: 4
#proportions choosing SS in the original and replication waves:
prop.test(table(rep$cond, rep$SS))
## 
##  3-sample test for equality of proportions without continuity
##  correction
## 
## data:  table(rep$cond, rep$SS)
## X-squared = 4.8948, df = 2, p-value = 0.08652
## alternative hypothesis: two.sided
## sample estimates:
##    prop 1    prop 2    prop 3 
## 0.5560976 0.4837209 0.5897436
prop.test(table(not$cond, not$SS))
## 
##  3-sample test for equality of proportions without continuity
##  correction
## 
## data:  table(not$cond, not$SS)
## X-squared = 2.3655, df = 2, p-value = 0.3064
## alternative hypothesis: two.sided
## sample estimates:
##    prop 1    prop 2    prop 3 
## 0.5053763 0.4340659 0.5079365

11. Familiarity with default studies.

Check if familiarity with this kind of study varies with wave. It does - people are apparently more familiar with default studies in the original than in the replication.

table(combined3$defaultstudies)
## 
##   1   2   3   4   5 
## 450 271 307  36  11
mean(combined3$defaultstudies, na.rm=TRUE)
## [1] 1.964651
combined3$defaultstudies<-combined3$defaultstudies -  1.964651
summary(combined3$defaultstudies)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
## -0.96470 -0.96470  0.03535  0.00000  1.03500  3.03500        4
summary(glm(defaultstudies~rep, data=combined3))
## 
## Call:
## glm(formula = defaultstudies ~ rep, data = combined3)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.03905  -0.90879  -0.03905   0.96095   3.09121  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  0.07439    0.04483   1.659   0.0973 .
## rep         -0.13025    0.05932  -2.196   0.0283 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.9265514)
## 
##     Null deviance: 998.66  on 1074  degrees of freedom
## Residual deviance: 994.19  on 1073  degrees of freedom
##   (4 observations deleted due to missingness)
## AIC: 2972.7
## 
## Number of Fisher Scoring iterations: 2
rep<-subset(combined3, rep==1)
not<-subset(combined3, rep!=1)
t.test(rep$defaultstudies, not$defaultstudies)
## 
##  Welch Two Sample t-test
## 
## data:  rep$defaultstudies and not$defaultstudies
## t = -2.1874, df = 976.56, p-value = 0.02895
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.24710565 -0.01339588
## sample estimates:
##   mean of x   mean of y 
## -0.05585621  0.07439455

And we can use familiarity with default studies (mean-centered) as a covariate, excluding outliers based on beta-delta (+/- 4 SDs from the mean). Note that bd is mean centered here too:

#no default effects overall, but we do see several 2 way interactions and a 3 way interaction
summary(glm(SS~cond*bd*defaultstudies, data=combined3, family=binomial))
## 
## Call:
## glm(formula = SS ~ cond * bd * defaultstudies, family = binomial, 
##     data = combined3)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5888  -1.0517  -0.5589   1.1964   2.5763  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               0.11949    0.14345   0.833  0.40486    
## condSS                    0.12875    0.18267   0.705  0.48093    
## condLL                   -0.31206    0.17719  -1.761  0.07821 .  
## bd                       -5.44512    0.98172  -5.547 2.91e-08 ***
## defaultstudies            0.43399    0.16167   2.684  0.00726 ** 
## condSS:bd                 0.03875    1.28216   0.030  0.97589    
## condLL:bd                 4.50850    1.10234   4.090 4.31e-05 ***
## condSS:defaultstudies    -0.32155    0.19697  -1.632  0.10258    
## condLL:defaultstudies    -0.57438    0.19491  -2.947  0.00321 ** 
## bd:defaultstudies        -1.69239    1.08746  -1.556  0.11964    
## condSS:bd:defaultstudies  1.40874    1.40731   1.001  0.31682    
## condLL:bd:defaultstudies  2.44884    1.22439   2.000  0.04550 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1489.5  on 1074  degrees of freedom
## Residual deviance: 1354.8  on 1063  degrees of freedom
##   (4 observations deleted due to missingness)
## AIC: 1378.8
## 
## Number of Fisher Scoring iterations: 5
#breaking down the 3 way interaction by separating the sample by familiarity (familiar are those who say they've seen at least "something like this study", unfamiliar are people who report below that point. That's the midpoint of the scale - 3 before it was mean-centered.)
table(combined3$defaultstudies)
## 
##          -0.964651 0.0353490000000001           1.035349 
##                450                271                307 
##           2.035349           3.035349 
##                 36                 11
familiar<-subset(combined3, defaultstudies>=1.035)
not<-subset(combined3, defaultstudies<1.035)

#among familiar people, there's a main effect of LL condition, not of SS, plus a main effect of bd and a 2 way interaction between bd and LL condition
summary(glm(SS~cond*bd, data=familiar, family=binomial))
## 
## Call:
## glm(formula = SS ~ cond * bd, family = binomial, data = familiar)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.8078  -1.0426   0.1997   1.1597   2.6434  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.7203     0.2998   2.403 0.016268 *  
## condSS       -0.2078     0.3640  -0.571 0.568139    
## condLL       -1.0075     0.3508  -2.872 0.004076 ** 
## bd           -7.8195     2.1168  -3.694 0.000221 ***
## condSS:bd     1.2327     2.6759   0.461 0.645030    
## condLL:bd     7.2295     2.3047   3.137 0.001708 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 489.83  on 353  degrees of freedom
## Residual deviance: 427.24  on 348  degrees of freedom
## AIC: 439.24
## 
## Number of Fisher Scoring iterations: 5
#plotting that 2 way interaction - LL default makes people less likely to choose SS, but only among relatively impatient people 
LLfam<-subset(familiar, cond!="SS")
f6<-glm(SS~cond*bd, data=LLfam, family=binomial)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f6, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  scale="response", xlab="Present Value of LL", ylab="Percent Choosing SS")

And among people unfamiliar with default studies, there are no main default effects but there is one interaction, in the same pattern:

summary(glm(SS~cond*bd, data=not, family=binomial))
## 
## Call:
## glm(formula = SS ~ cond * bd, family = binomial, data = not)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3685  -1.0545  -0.8169   1.2246   1.7275  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.160095   0.157065  -1.019   0.3081    
## condSS       0.285898   0.207945   1.375   0.1692    
## condLL       0.008997   0.201230   0.045   0.9643    
## bd          -4.147045   1.034004  -4.011 6.05e-05 ***
## condSS:bd   -0.791866   1.409927  -0.562   0.5744    
## condLL:bd    3.045944   1.189602   2.560   0.0105 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 996.45  on 720  degrees of freedom
## Residual deviance: 928.88  on 715  degrees of freedom
## AIC: 940.88
## 
## Number of Fisher Scoring iterations: 4
#plotting the pattern:
LLnot<-subset(not, cond!="SS")
f7<-glm(SS~cond*bd, data=LLnot, family=binomial)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f7, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  scale="response", xlab="Present Value of LL", ylab="Percent Choosing SS")

Finally, we can also just control for default studies as a covariate, without interacting it with the other factors. Here we see no default effects overall, but a similar interaction with LL.

summary(glm(SS~bd*cond + defaultstudies, data=combined3, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd * cond + defaultstudies, family = "binomial", 
##     data = combined3)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5500  -1.0536  -0.5938   1.2233   2.2920  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     0.07048    0.13544   0.520    0.603    
## bd             -5.02482    0.91920  -5.467 4.59e-08 ***
## condSS          0.17838    0.17637   1.011    0.312    
## condLL         -0.26712    0.17032  -1.568    0.117    
## defaultstudies  0.06387    0.06687   0.955    0.339    
## bd:condSS      -0.37989    1.23329  -0.308    0.758    
## bd:condLL       4.10931    1.04324   3.939 8.18e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1489.5  on 1074  degrees of freedom
## Residual deviance: 1366.5  on 1068  degrees of freedom
##   (4 observations deleted due to missingness)
## AIC: 1380.5
## 
## Number of Fisher Scoring iterations: 4
LLcontrol<-subset(combined3, cond!="SS")
f8<-glm(SS~cond*bd, data=LLcontrol, family=binomial)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f7, "bd", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  scale="response", xlab="Present Value of LL", ylab="Percent Choosing SS")

What does familiarity correlate with?

cor.test(combined3$defaultstudies, combined3$interviewtime)
## 
##  Pearson's product-moment correlation
## 
## data:  combined3$defaultstudies and combined3$interviewtime
## t = -1.3369, df = 903, p-value = 0.1816
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.10929522  0.02078278
## sample estimates:
##         cor 
## -0.04444459
cor.test(combined3$defaultstudies, combined3$bd)
## 
##  Pearson's product-moment correlation
## 
## data:  combined3$defaultstudies and combined3$bd
## t = -1.1884, df = 1073, p-value = 0.2349
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.09583971  0.02358470
## sample estimates:
##         cor 
## -0.03625695
SS<-subset(combined3, cond=="SS")
LL<-subset(combined3, cond=="LL")

cor.test(SS$defaultstudies, SS$interviewtime)
## 
##  Pearson's product-moment correlation
## 
## data:  SS$defaultstudies and SS$interviewtime
## t = -1.5737, df = 313, p-value = 0.1166
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.19718021  0.02212162
## sample estimates:
##         cor 
## -0.08860292
cor.test(SS$defaultstudies, SS$bd)
## 
##  Pearson's product-moment correlation
## 
## data:  SS$defaultstudies and SS$bd
## t = -1.2776, df = 395, p-value = 0.2022
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.16155031  0.03449129
## sample estimates:
##         cor 
## -0.06414837
cor.test(LL$defaultstudies, LL$interviewtime)
## 
##  Pearson's product-moment correlation
## 
## data:  LL$defaultstudies and LL$interviewtime
## t = -0.74253, df = 293, p-value = 0.4584
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.15676023  0.07121212
## sample estimates:
##         cor 
## -0.04333818
cor.test(LL$defaultstudies, LL$bd)
## 
##  Pearson's product-moment correlation
## 
## data:  LL$defaultstudies and LL$bd
## t = -1.3669, df = 381, p-value = 0.1725
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.16888275  0.03056215
## sample estimates:
##         cor 
## -0.06985838

12. Recoding the condition variable.

By default, GLM displays the effects of different levels of a factor relative to the level with the earliest letter in the alphabet. The factor levels are “SS” “LL” and “no.” Throughout this analysis we have re-ordered the factor levels so that the effects of SS and LL default conditions are shown relative to the no default condition.

Similarly, if we re-code the factor levels to be numbers instead of letters, GLM will show the effects of the factor levels relative to the lowest number. Since we’re interested in the effects of the SS and LL defaults relative to no default, we would want to code the no default condition as the lowest number. Doing so gives the same results as using letters.

summary(glm(SS~cond*bd, data=combined3, family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond * bd, family = "binomial", data = combined3)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5539  -1.0494  -0.6123   1.2303   2.3117  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.05648    0.13389   0.422 0.673172    
## condSS       0.19354    0.17516   1.105 0.269194    
## condLL      -0.25871    0.16901  -1.531 0.125827    
## bd          -4.96633    0.90701  -5.476 4.36e-08 ***
## condSS:bd   -0.45480    1.22373  -0.372 0.710156    
## condLL:bd    3.98993    1.03030   3.873 0.000108 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1494.9  on 1078  degrees of freedom
## Residual deviance: 1372.2  on 1073  degrees of freedom
## AIC: 1384.2
## 
## Number of Fisher Scoring iterations: 4
combined3$cond2[combined3$cond=="no"]<-0
combined3$cond2[combined3$cond=="SS"]<-1
combined3$cond2[combined3$cond=="LL"]<-2
combined3$cond2<-as.factor(combined3$cond2)
summary(glm(SS~cond2*bd, data=combined3, family="binomial"))
## 
## Call:
## glm(formula = SS ~ cond2 * bd, family = "binomial", data = combined3)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5539  -1.0494  -0.6123   1.2303   2.3117  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.05648    0.13389   0.422 0.673172    
## cond21       0.19354    0.17516   1.105 0.269194    
## cond22      -0.25871    0.16901  -1.531 0.125827    
## bd          -4.96633    0.90701  -5.476 4.36e-08 ***
## cond21:bd   -0.45480    1.22373  -0.372 0.710156    
## cond22:bd    3.98993    1.03030   3.873 0.000108 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1494.9  on 1078  degrees of freedom
## Residual deviance: 1372.2  on 1073  degrees of freedom
## AIC: 1384.2
## 
## Number of Fisher Scoring iterations: 4

13. Test-retest measure.

Next we can look at the “test-retest reliability” measure - i.e. the difference in beta-delta scores between the original and the follow up measures. This measure doesn’t interact with condition

deep<-read.csv("deep_time8recontact.csv", header=T, sep=",")
ls<-read.csv("LS completes_july29recontacts.csv", header=T, sep=",")
r<-merge(deep, ls, by="serial")
r$mturkID<-r$"s643213.q8245.WorkerID"
r<-merge(r, combined2, by="mturkID")

r$bd1<-r$beta.y*((1/(1+r$delta.y))^(2/52))*1.5
r$bd2<-r$beta.x*((1/(1+r$delta.x))^(2/52))*1.5

r$diff<-abs(r$bd1 - r$bd2)
r$diffcen<-r$diff - mean(r$diff)

summary(glm(SS~diffcen*cond, data=r, family="binomial"))
## 
## Call:
## glm(formula = SS ~ diffcen * cond, family = "binomial", data = r)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.309  -1.100  -1.034   1.237   1.453  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -0.25458    0.14879  -1.711   0.0871 .
## diffcen        -0.64830    0.76992  -0.842   0.3998  
## condSS          0.34379    0.20012   1.718   0.0858 .
## condLL          0.03062    0.19901   0.154   0.8777  
## diffcen:condSS  0.35380    1.03411   0.342   0.7323  
## diffcen:condLL  1.08797    1.01996   1.067   0.2861  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 900.37  on 650  degrees of freedom
## Residual deviance: 895.51  on 645  degrees of freedom
## AIC: 907.51
## 
## Number of Fisher Scoring iterations: 4

However, there is a 3 way interaction between the original beta-delta measure, condition, and the test-retest measure.

summary(glm(SS~diffcen*cond*bd1, data=r, family="binomial"))
## 
## Call:
## glm(formula = SS ~ diffcen * cond * bd1, family = "binomial", 
##     data = r)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.9453  -0.9973  -0.5602   1.1417   2.7529  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         0.25066    0.21475   1.167 0.243111    
## diffcen            -4.73906    1.33751  -3.543 0.000395 ***
## condSS              0.09053    0.27833   0.325 0.744984    
## condLL             -0.45459    0.25550  -1.779 0.075208 .  
## bd1                -8.79052    1.82281  -4.822 1.42e-06 ***
## diffcen:condSS      1.67915    1.68895   0.994 0.320127    
## diffcen:condLL      3.85669    1.56795   2.460 0.013905 *  
## diffcen:bd1         7.02432    4.63621   1.515 0.129747    
## condSS:bd1          1.55049    2.30199   0.674 0.500601    
## condLL:bd1          6.37274    1.99166   3.200 0.001376 ** 
## diffcen:condSS:bd1 -5.35078    6.11850  -0.875 0.381833    
## diffcen:condLL:bd1 -9.74433    5.30036  -1.838 0.065999 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 900.37  on 650  degrees of freedom
## Residual deviance: 783.37  on 639  degrees of freedom
## AIC: 807.37
## 
## Number of Fisher Scoring iterations: 5
LLcontrol<-subset(r, cond!="SS")
LLcontrol<-droplevels(LLcontrol)

summary(glm(SS~diffcen*cond*bd1, data=LLcontrol, family="binomial")) #this is where the three way interaction shows up
## 
## Call:
## glm(formula = SS ~ diffcen * cond * bd1, family = "binomial", 
##     data = LLcontrol)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.9034  -0.9994  -0.7322   1.1958   2.7529  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          0.2507     0.2147   1.167 0.243111    
## diffcen             -4.7391     1.3375  -3.543 0.000395 ***
## condLL              -0.4546     0.2555  -1.779 0.075208 .  
## bd1                 -8.7905     1.8228  -4.822 1.42e-06 ***
## diffcen:condLL       3.8567     1.5680   2.460 0.013905 *  
## diffcen:bd1          7.0243     4.6362   1.515 0.129747    
## condLL:bd1           6.3727     1.9917   3.200 0.001376 ** 
## diffcen:condLL:bd1  -9.7443     5.3004  -1.838 0.065999 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 586.76  on 426  degrees of freedom
## Residual deviance: 526.88  on 419  degrees of freedom
## AIC: 542.88
## 
## Number of Fisher Scoring iterations: 5

We can break down the interaction by looking at how the beta-delta X condition interaction changes as a function of the test-retest measure. We can start with just a basic median split. It appears that preferences (beta-delta) only interact with condition when people’s preferences are relatively stable. Also, default condition only seems to have an effect on choice when preferences are stable.

LLcontrol$diffcen<-LLcontrol$diffcen-mean(LLcontrol$diffcen)
summary(LLcontrol$diffcen)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -0.921100 -0.070220  0.001368  0.000000  0.070400  0.761600
stable<-subset(LLcontrol, diffcen<0.001368)
notstable<-subset(LLcontrol, diffcen>0.001368)

summary(glm(SS~bd1*cond, data=stable, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd1 * cond, family = "binomial", data = stable)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6931  -0.9988  -0.7644   1.2742   3.0910  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.5849     0.3322   1.761 0.078274 .  
## bd1         -10.0092     2.7106  -3.693 0.000222 ***
## condLL       -0.8363     0.3966  -2.109 0.034967 *  
## bd1:condLL    8.4555     2.9466   2.870 0.004111 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.58  on 213  degrees of freedom
## Residual deviance: 258.69  on 210  degrees of freedom
## AIC: 266.69
## 
## Number of Fisher Scoring iterations: 5
summary(glm(SS~bd1*cond, data=notstable, family="binomial"))
## 
## Call:
## glm(formula = SS ~ bd1 * cond, family = "binomial", data = notstable)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7195  -1.0162  -0.9193   1.1933   1.8889  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.10806    0.23479  -0.460    0.645  
## bd1         -3.18979    1.47853  -2.157    0.031 *
## condLL      -0.09385    0.29617  -0.317    0.751  
## bd1:condLL   0.28817    1.79152   0.161    0.872  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.71  on 212  degrees of freedom
## Residual deviance: 279.71  on 209  degrees of freedom
## AIC: 287.71
## 
## Number of Fisher Scoring iterations: 4

We can also use diff and bd1 as predictors - the more stable preferences are, the less likely people are to choose SS:

summary(glm(SS~diff+bd1, data=r, family="binomial"))
## 
## Call:
## glm(formula = SS ~ diff + bd1, family = "binomial", data = r)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.7732  -0.9941  -0.6017   1.1662   2.2597  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   3.2369     0.8113   3.990 6.62e-05 ***
## diff         -2.1720     0.5386  -4.032 5.52e-05 ***
## bd1          -4.9945     0.6169  -8.096 5.66e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 900.37  on 650  degrees of freedom
## Residual deviance: 806.31  on 648  degrees of freedom
## AIC: 812.31
## 
## Number of Fisher Scoring iterations: 4

And we can check if using the mean of the two DEEP measures (rather than their difference) provides any new insights. The mean does interact with the LL condition, in the same way as the first DEEP measure (i.e. in the counter-intuitive way).

r$mean<-(r$bd1+r$bd2)/2
summary(glm(SS~mean*cond, data=r, family="binomial"))
## 
## Call:
## glm(formula = SS ~ mean * cond, family = "binomial", data = r)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.8730  -1.0008  -0.5357   1.1378   1.9556  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   5.9964     1.2601   4.759 1.95e-06 ***
## mean         -7.9756     1.5811  -5.044 4.55e-07 ***
## condSS       -0.5644     1.6150  -0.349  0.72674    
## condLL       -4.3135     1.4035  -3.073  0.00212 ** 
## mean:condSS   1.0323     2.0288   0.509  0.61088    
## mean:condLL   5.4818     1.7686   3.100  0.00194 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 900.37  on 650  degrees of freedom
## Residual deviance: 788.59  on 645  degrees of freedom
## AIC: 800.59
## 
## Number of Fisher Scoring iterations: 5
LLcontrol<-subset(r, cond!="SS")
LLcontrol<-droplevels(LLcontrol)
f5<-(glm(SS~mean*cond, data=LLcontrol,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f5, "mean", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE,  xlab="Present value of LL", scale="response", ylab="P (choosing SS)")