Model Syntax

Group 1 = Treatment

Group 0 = Control

See this link: http://lavaan.ugent.be/tutorial/growth.html

### Model

    LG.mod <- '
              intercept=~1*ALAQSUM+1*CLAQSUM+1*DLAQSUM
              slope=~0*ALAQSUM+1*CLAQSUM+2*DLAQSUM
              intercept~AAUDITTot.log 
              slope~AAUDITTot.log 
              '
     
    fit <- growth(LG.mod, data=A1.tm, missing="ml")
    summary(fit, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-22) converged normally after 113 iterations
## 
##                                                   Used       Total
##   Number of observations                          1125        1142
## 
##   Number of missing patterns                         8
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.264
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.876
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              747.639
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.007
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11239.280
##   Loglikelihood unrestricted model (H1)     -11239.148
## 
##   Number of free parameters                         10
##   Akaike (AIC)                               22498.560
##   Bayesian (BIC)                             22548.816
##   Sample-size adjusted Bayesian (BIC)        22517.053
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.029
##   P-value RMSEA <= 0.05                          0.991
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.003
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intercept =~                                                          
##     ALAQSUM           1.000                               7.772    0.923
##     CLAQSUM           1.000                               7.772    0.796
##     DLAQSUM           1.000                               7.772    0.902
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               3.820    0.391
##     DLAQSUM           2.000                               7.639    0.886
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intercept ~                                                           
##     AAUDITTot.log     0.443    0.279    1.584    0.113    0.057    0.052
##   slope ~                                                               
##     AAUDITTot.log    -0.159    0.171   -0.932    0.351   -0.042   -0.038
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .intercept ~~                                                          
##    .slope           -12.511    2.477   -5.051    0.000   -0.422   -0.422
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##    .intercept        55.433    0.352  157.383    0.000    7.132    7.132
##    .slope            -1.884    0.205   -9.206    0.000   -0.493   -0.493
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          10.536    4.168    2.528    0.011   10.536    0.149
##    .CLAQSUM          45.479    2.822   16.114    0.000   45.479    0.477
##    .DLAQSUM           5.770    4.315    1.337    0.181    5.770    0.078
##    .intercept        60.247    4.861   12.395    0.000    0.997    0.997
##    .slope            14.568    2.075    7.019    0.000    0.999    0.999
  ##Add Clustering (do not use)
  # survey.design <- svydesign(ids=~SCHOOL,prob=~1,data=A1.t,missing="ml")
  # survey.fit <- lavaan.survey(lavaan.fit=fit,survey.design = survey.design)
  # summary(survey.fit,fit.measures=TRUE,standardized=TRUE,modindices=TRUE)
  
  ##Residual correlation
  #getCor(fit) #Does not apply to latent growth model