Model Syntax

Group 1 = Treatment

Group 0 = Control

See this link: http://lavaan.ugent.be/tutorial/growth.html

### Model

    LG.mod <- '
              intercept=~1*ALAQSUM+1*CLAQSUM+1*DLAQSUM
              slope=~0*ALAQSUM+1*CLAQSUM+2*DLAQSUM
              intercept~AAUDITTot.log 
              slope~AAUDITTot.log 
              '
     
    fit <- growth(LG.mod, data=A1.tm, missing="ml",group="rndcode")
    summary(fit, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-22) converged normally after 215 iterations
## 
##   Number of observations per group         
##   Treatment                                        362
##   Control                                          763
## 
##   Number of missing patterns per group     
##   Treatment                                          6
##   Control                                            8
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                2.651
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.618
## 
## Chi-square for each group:
## 
##   Treatment                                      1.709
##   Control                                        0.942
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              754.253
##   Degrees of freedom                                12
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.005
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11233.012
##   Loglikelihood unrestricted model (H1)     -11231.686
## 
##   Number of free parameters                         20
##   Akaike (AIC)                               22506.024
##   Bayesian (BIC)                             22606.534
##   Sample-size adjusted Bayesian (BIC)        22543.009
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.053
##   P-value RMSEA <= 0.05                          0.938
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.010
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## 
## Group 1 [Treatment]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intercept =~                                                          
##     ALAQSUM           1.000                               7.321    0.882
##     CLAQSUM           1.000                               7.321    0.782
##     DLAQSUM           1.000                               7.321    0.878
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               3.157    0.337
##     DLAQSUM           2.000                               6.314    0.757
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intercept ~                                                           
##     AAUDITTot.log     0.816    0.482    1.693    0.090    0.112    0.102
##   slope ~                                                               
##     AAUDITTot.log    -0.668    0.280   -2.385    0.017   -0.212   -0.193
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .intercept ~~                                                          
##    .slope            -8.998    4.156   -2.165    0.030   -0.399   -0.399
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##    .intercept        55.775    0.605   92.227    0.000    7.618    7.618
##    .slope            -1.432    0.335   -4.280    0.000   -0.454   -0.454
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM          15.241    6.994    2.179    0.029   15.241    0.221
##    .CLAQSUM          42.972    4.703    9.136    0.000   42.972    0.490
##    .DLAQSUM          13.877    7.581    1.831    0.067   13.877    0.200
##    .intercept        53.050    7.945    6.677    0.000    0.990    0.990
##    .slope             9.598    3.575    2.685    0.007    0.963    0.963
## 
## 
## Group 2 [Control]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intercept =~                                                          
##     ALAQSUM           1.000                               7.930    0.937
##     CLAQSUM           1.000                               7.930    0.799
##     DLAQSUM           1.000                               7.930    0.907
##   slope =~                                                              
##     ALAQSUM           0.000                               0.000    0.000
##     CLAQSUM           1.000                               4.056    0.409
##     DLAQSUM           2.000                               8.112    0.928
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intercept ~                                                           
##     AAUDITTot.log     0.269    0.341    0.788    0.431    0.034    0.031
##   slope ~                                                               
##     AAUDITTot.log     0.107    0.212    0.502    0.615    0.026    0.024
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .intercept ~~                                                          
##    .slope           -13.730    3.061   -4.486    0.000   -0.427   -0.427
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           0.000                               0.000    0.000
##    .CLAQSUM           0.000                               0.000    0.000
##    .DLAQSUM           0.000                               0.000    0.000
##    .intercept        55.282    0.432  128.102    0.000    6.971    6.971
##    .slope            -2.119    0.256   -8.285    0.000   -0.522   -0.522
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ALAQSUM           8.813    5.167    1.706    0.088    8.813    0.123
##    .CLAQSUM          46.542    3.510   13.259    0.000   46.542    0.473
##    .DLAQSUM           2.522    5.269    0.479    0.632    2.522    0.033
##    .intercept        62.824    6.069   10.351    0.000    0.999    0.999
##    .slope            16.440    2.545    6.459    0.000    0.999    0.999
  ##Add Clustering (do not use)
  # survey.design <- svydesign(ids=~SCHOOL,prob=~1,data=A1.t,missing="ml")
  # survey.fit <- lavaan.survey(lavaan.fit=fit,survey.design = survey.design)
  # summary(survey.fit,fit.measures=TRUE,standardized=TRUE,modindices=TRUE)
  
  ##Residual correlation
  #getCor(fit) #Does not apply to latent growth model