Primeira medida em: 03/25/15 com a cavidade HS-1085.

\[ \large \Delta{g_{3-4}}=\ 8.67 mT \] O sinal normalizado \(S_{N}\) é dado por:

\[ \large S_N={{S} \over C_T.N_S.20.10^{{RG}/{20}}} \] onde:
- \(S\) é o sinal bruto
- \(C_{T}\) é tempo de conversão em ms
- \(N_{S}\) é o número de varreduras
- RG é o ganho em dB
   

Segunda medida em: 11/21/16.

\[\large \Delta{g_{3-4}}=\ 8.68mT\]

     

                                                        Orlando
LS0tDQp0aXRsZTogIk1lZGlkYXMgZG8gYW50aWdvIHBhZHLjbyBNbisyIGRvIEVQUiBKRU9MIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCmBgYHtyLGVjaG89RkFMU0V9DQojDQpsaWJyYXJ5KGdncGxvdDIpDQojIGZ1bmMgbG9jYWwgbWF4IG1pbiANCiMgK3ggbWF4LCAteCBtaW4NCiMgbm9ybWFsaXph5+NvIGRvIHNpbmFsOiBCcnVrZXIgWEVOT04gTWFudWFsDQojIHJlZi4gaHR0cHM6Ly9naXRodWIuY29tL3N0YXMtZy9maW5kUGVha3MgI1N0YXNpYSBHcmluYmVyZw0KZmluZF9wZWFrcyA8LSBmdW5jdGlvbiAoeCwgbSA9IDMpew0KICBzaGFwZSA8LSBkaWZmKHNpZ24oZGlmZih4LCBuYS5wYWQgPSBGQUxTRSkpKQ0KICBwa3MgPC0gc2FwcGx5KHdoaWNoKHNoYXBlIDwgMCksIEZVTiA9IGZ1bmN0aW9uKGkpew0KICAgIHogPC0gaSAtIG0gKyAxDQogICAgeiA8LSBpZmVsc2UoeiA+IDAsIHosIDEpDQogICAgdyA8LSBpICsgbSArIDENCiAgICB3IDwtIGlmZWxzZSh3IDwgbGVuZ3RoKHgpLCB3LCBsZW5ndGgoeCkpDQogICAgaWYoYWxsKHhbYyh6IDogaSwgKGkgKyAyKSA6IHcpXSA8PSB4W2kgKyAxXSkpIHJldHVybihpICsgMSkgZWxzZSByZXR1cm4obnVtZXJpYygwKSkNCiAgfSkNCiAgcGtzIDwtIHVubGlzdChwa3MpDQogIHBrcw0KfQ0KIyBsZWl0dXJhIGVtIDIwMTUNCmZpbGVEU0M8LSJwYWRyYW8gTW4gMjRtYWMyMDE1LkRTQyINCmZpbGVEYXQ8LSJwYWRyYW8gTW4gMjRtYWMyMDE1LkRUQSINCmRzYyA8LSByZWFkTGluZXMoZmlsZURTQyxlbmNvZGluZz0iVVRGLTgiKQ0KcG9udG9zPC1ncmVwKCJYUFRTIixkc2MsdmFsdWU9VCk7Y2FtcG9zPC1zdHJzcGxpdChwb250b3MsJ1x0JylbWzFdXTtYUFRTPC1hcy5udW1lcmljKGNhbXBvc1syXSkNCnBvbnRvczwtZ3JlcCgiWE1JTiIsZHNjLHZhbHVlPVQpO2NhbXBvczwtc3Ryc3BsaXQocG9udG9zLCdcdCcpW1sxXV07WE1JTjwtYXMubnVtZXJpYyhjYW1wb3NbMl0pDQpwb250b3M8LWdyZXAoIlhXSUQiLGRzYyx2YWx1ZT1UKTtjYW1wb3M8LXN0cnNwbGl0KHBvbnRvcywnXHQnKVtbMV1dO1hXSUQ8LWFzLm51bWVyaWMoY2FtcG9zWzJdKQ0KcG9udG9zPC1ncmVwKCJNV0ZRIixkc2MsdmFsdWU9VCk7Y2FtcG9zPC1zdHJzcGxpdChwb250b3MsJyAgICAnKVtbMV1dO01GPC1hcy5udW1lcmljKGNhbXBvc1syXSkvMWU5I0dIeg0KcG9udG9zPC1ncmVwKCJSQ0FHIixkc2MsdmFsdWU9VCk7Y2FtcG9zPC1zdHJzcGxpdChwb250b3MsJyAgICAnKVtbMV1dO1JHPC1hcy5udW1lcmljKGNhbXBvc1syXSkNCnBvbnRvczwtZ3JlcCgiU1BUUCIsZHNjLHZhbHVlPVQpO2NhbXBvczwtc3Ryc3BsaXQocG9udG9zLCcgICAgJylbWzFdXTtDVDwtYXMubnVtZXJpYyhjYW1wb3NbMl0pKjEwMDAjbXMNCnBvbnRvczwtZ3JlcCgiQVZHUyIsZHNjLHZhbHVlPVQpO2NhbXBvczwtc3Ryc3BsaXQocG9udG9zLCcgICAgJylbWzFdXTtTQ0FOPC1hcy5udW1lcmljKGNhbXBvc1syXSkNCmluZm88LWdyZXAoIkRBVEUiLCBkc2MsdmFsdWU9VCk7Y2FtcG9zPC1zdHJzcGxpdChpbmZvLCcgICAgJylbWzFdXTtkYXRhMTwtKGNhbXBvc1syXSkNCnBhc3NvPC1yb3VuZChYV0lEL1hQVFMsMSkNCmI8LXNlcSgxOlhQVFMpDQpnZzwtc2VxKDE6WFBUUykNCmZvcihpIGluIDE6WFBUUyl7DQogIGJbaV08LVhNSU4rKHBhc3NvKihpLTEpKQ0KfQ0KYjwtZGF0YS5mcmFtZShiKQ0KZzwtNzE0LjU1Kk1GL2INCnM8LXJlYWRCaW4oInBhZHJhbyBNbiAyNG1hYzIwMTUuRFRBIiwgZG91YmxlKCksIG4gPSBYUFRTLCBzaXplID0gOCwgZW5kaWFuID0gImJpZyIpO3M8LWRhdGEuZnJhbWUocyk7DQpzbjwtcy8oQ1QqU0NBTioyMCoxMF4oUkcvMjApKQ0KZGFkb3M8LWNiaW5kKGIsZyxzLHNuKTtjb2xuYW1lcyhkYWRvcylbMl0gPC0gImciO2NvbG5hbWVzKGRhZG9zKVs0XSA8LSAic24iDQoNCiMgbGVpdHVyYSBlbSAyMDE2DQpmaWxlRFNDPC0iTW4tSUkgMjFub3YyMDE2IHBhck1uMjRtYWMyMDE1LkRTQyINCmZpbGVEYXQ8LSJNbi1JSSAyMW5vdjIwMTYgcGFyTW4yNG1hYzIwMTUuRFRBIg0KZHNjMSA8LSByZWFkTGluZXMoZmlsZURTQyxlbmNvZGluZz0iVVRGLTgiKQ0KaW5mbzwtZ3JlcCgiREFURSIsIGRzYzEsdmFsdWU9VCk7Y2FtcG9zPC1zdHJzcGxpdChpbmZvLCcgICAgJylbWzFdXTtkYXRhMjwtKGNhbXBvc1syXSkNCg0KIw0KYGBgDQoNClByaW1laXJhIG1lZGlkYSBlbTogYHIgZGF0YTFgIGNvbSBhIGNhdmlkYWRlIEhTLTEwODUuDQpgYGB7cixlY2hvPUZBTFNFLCBmaWcud2lkdGg9OSxmaWcuaGVpZ2h0PTd9DQojIG1heCBtaW4NCm14PC1maW5kX3BlYWtzKGRhZG9zJHNuLG09MzAwKSM7bXgNCm1uPC1maW5kX3BlYWtzKC1kYWRvcyRzbixtPTMwMCkjO21uDQpwZzwtKGRhZG9zJGdbbXhdK2RhZG9zJGdbbW5dKS8yDQp5eTwtZGFkb3Mkc25bbXhbMV1dLzINCmRlbHRhMTwtYWJzKHJvdW5kKGRhZG9zJGJbbXhbM11dLWRhZG9zJGJbbXhbNF1dLDMpKS8xMCMgMW1UPTEwRw0KDQoNCmdncGxvdChkYWRvcyxhZXMoeD1nLHk9c24pKStzY2FsZV94X3JldmVyc2UoKStnZW9tX2xpbmUoKSsNCiAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID1wZywgY29sPSJyZWQiKSsNCiAgbGFicyh4PSJnRmFjdG9yIiwgeT0iRVBSIE5vcm1hbGl6ZWQgU2lnbmFsIChhLnUuKSIpKw0KICBnZW9tX3RleHQoYWVzKHg9cGdbMV0tMC4wMSwgbGFiZWw9cm91bmQocGdbMV0sNCksIHk9eXkpLCBzaXplPTMpKw0KICBnZW9tX3RleHQoYWVzKHg9cGdbMl0tMC4wMSwgbGFiZWw9cm91bmQocGdbMl0sNCksIHk9eXkpLCBzaXplPTMpKw0KICBnZW9tX3RleHQoYWVzKHg9cGdbM10tMC4wMSwgbGFiZWw9cm91bmQocGdbM10sNCksIHk9eXkpLCBzaXplPTMpKw0KICBnZW9tX3RleHQoYWVzKHg9cGdbNF0tMC4wMSwgbGFiZWw9cm91bmQocGdbNF0sNCksIHk9eXkpLCBzaXplPTMpKw0KICBnZW9tX3RleHQoYWVzKHg9cGdbNV0tMC4wMSwgbGFiZWw9cm91bmQocGdbNV0sNCksIHk9eXkpLCBzaXplPTMpKw0KICBnZW9tX3RleHQoYWVzKHg9cGdbNl0tMC4wMSwgbGFiZWw9cm91bmQocGdbNl0sNCksIHk9eXkpLCBzaXplPTMpDQpgYGANCg0KJCQNClxsYXJnZSBcRGVsdGF7Z197My00fX09XCBgciBkZWx0YTFgIG1UDQokJA0KTyBzaW5hbCBub3JtYWxpemFkbyAkU197Tn0kIOkgZGFkbyBwb3I6DQoNCiQkDQpcbGFyZ2UgIFNfTj17e1N9IFxvdmVyIENfVC5OX1MuMjAuMTBee3tSR30vezIwfX19DQokJA0Kb25kZTogICANCi0gJFMkIOkgbyBzaW5hbCBicnV0byAgDQotICRDX3tUfSQg6SB0ZW1wbyBkZSBjb252ZXJz428gZW0gbXMgIA0KLSAkTl97U30kIOkgbyBu+m1lcm8gZGUgdmFycmVkdXJhcyAgICANCi0gKlJHKiDpIG8gZ2FuaG8gZW0gZEIgIA0KICZuYnNwOyANCiAmbmJzcDsNCiAgICAgICANCiAgICANClNlZ3VuZGEgbWVkaWRhIGVtOiBgciBkYXRhMmAuDQpgYGB7cixlY2hvPUZBTFNFLCBmaWcud2lkdGg9OSxmaWcuaGVpZ2h0PTd9DQojbGVpdHVyYSBlbSAyMDE2DQpwb250b3M8LWdyZXAoIlhQVFMiLGRzYzEsdmFsdWU9VCk7Y2FtcG9zPC1zdHJzcGxpdChwb250b3MsJ1x0JylbWzFdXTtYUFRTPC1hcy5udW1lcmljKGNhbXBvc1syXSkNCnBvbnRvczwtZ3JlcCgiWE1JTiIsZHNjMSx2YWx1ZT1UKTtjYW1wb3M8LXN0cnNwbGl0KHBvbnRvcywnXHQnKVtbMV1dO1hNSU48LWFzLm51bWVyaWMoY2FtcG9zWzJdKQ0KcG9udG9zPC1ncmVwKCJYV0lEIixkc2MxLHZhbHVlPVQpO2NhbXBvczwtc3Ryc3BsaXQocG9udG9zLCdcdCcpW1sxXV07WFdJRDwtYXMubnVtZXJpYyhjYW1wb3NbMl0pDQpwb250b3M8LWdyZXAoIk1XRlEiLGRzYzEsdmFsdWU9VCk7Y2FtcG9zPC1zdHJzcGxpdChwb250b3MsJyAgICAnKVtbMV1dO01GPC1hcy5udW1lcmljKGNhbXBvc1syXSkvMWU5I0dIeg0KcG9udG9zPC1ncmVwKCJSQ0FHIixkc2MxLHZhbHVlPVQpO2NhbXBvczwtc3Ryc3BsaXQocG9udG9zLCcgICAgJylbWzFdXTtSRzwtYXMubnVtZXJpYyhjYW1wb3NbMl0pDQpwb250b3M8LWdyZXAoIlNQVFAiLGRzYzEsdmFsdWU9VCk7Y2FtcG9zPC1zdHJzcGxpdChwb250b3MsJyAgICAnKVtbMV1dO0NUPC1hcy5udW1lcmljKGNhbXBvc1syXSkqMTAwMCNtcw0KcG9udG9zPC1ncmVwKCJBVkdTIixkc2MxLHZhbHVlPVQpO2NhbXBvczwtc3Ryc3BsaXQocG9udG9zLCcgICAgJylbWzFdXTtTQ0FOPC1hcy5udW1lcmljKGNhbXBvc1syXSkNCnBhc3NvPC1yb3VuZChYV0lEL1hQVFMsNCkNCmI8LXNlcSgxOlhQVFMpDQpnPC1zZXEoMTpYUFRTKQ0KZm9yKGkgaW4gMTpYUFRTKXsNCiAgYltpXTwtWE1JTisocGFzc28qKGktMSkpDQp9DQpiPC1kYXRhLmZyYW1lKGIpDQpnPC03MTQuNTUqTUYvYg0KDQpzPC1yZWFkQmluKGZpbGVEYXQsIGRvdWJsZSgpLCBuID0gWFBUUywgc2l6ZSA9IDgsIGVuZGlhbiA9ICJiaWciKTsNCnNuPC1zLyhDVCpTQ0FOKjIwKjEwXihSRy8yMCkpDQpzPC1kYXRhLmZyYW1lKHMpOw0KDQpkYWRvczI8LWNiaW5kKGIsZyxzLHNuKTtjb2xuYW1lcyhkYWRvczIpWzJdIDwtICJnIjtjb2xuYW1lcyhkYWRvczIpWzRdIDwtICJzbiINCiMjIyMjIyMNCm14PC1maW5kX3BlYWtzKGRhZG9zMiRzbixtPTQwMCkjO214DQptbjwtZmluZF9wZWFrcygtZGFkb3MyJHNuLG09NDAwKSM7bW4NCnl5PC1kYWRvczIkc1tteFsxXV0vMg0KcGc8LShkYWRvczIkZ1tteF0rZGFkb3MyJGdbbW5dKS8yDQpkZWx0YTI8LWFicyhyb3VuZChkYWRvczIkYltteFszXV0tZGFkb3MyJGJbbXhbNF1dLDMpKS8xMCMgMW1UPTEwRw0KDQpnZ3Bsb3QoZGFkb3MyLGFlcyh4PWcseT1zKSkrc2NhbGVfeF9yZXZlcnNlKCkrZ2VvbV9saW5lKCkrDQogIGdlb21fdmxpbmUoeGludGVyY2VwdCA9cGcsIGNvbD0icmVkIikrDQogIGxhYnMoeD0iZ0ZhY3RvciIsIHk9IkVQUiBTaWduYWwgKGEudS4pIikrDQogIGdlb21fdGV4dChhZXMoeD1wZ1sxXS0wLjAxLCBsYWJlbD1yb3VuZChwZ1sxXSw0KSwgeT15eSksIHNpemU9MykrDQogIGdlb21fdGV4dChhZXMoeD1wZ1syXS0wLjAxLCBsYWJlbD1yb3VuZChwZ1syXSw0KSwgeT15eSksIHNpemU9MykrDQogIGdlb21fdGV4dChhZXMoeD1wZ1szXS0wLjAxLCBsYWJlbD1yb3VuZChwZ1szXSw0KSwgeT15eSksIHNpemU9MykrDQogIGdlb21fdGV4dChhZXMoeD1wZ1s0XS0wLjAxLCBsYWJlbD1yb3VuZChwZ1s0XSw0KSwgeT15eSksIHNpemU9MykrDQogIGdlb21fdGV4dChhZXMoeD1wZ1s1XS0wLjAxLCBsYWJlbD1yb3VuZChwZ1s1XSw0KSwgeT15eSksIHNpemU9MykrDQogIGdlb21fdGV4dChhZXMoeD1wZ1s2XS0wLjAxLCBsYWJlbD1yb3VuZChwZ1s2XSw0KSwgeT15eSksIHNpemU9MykNCg0KI2V4ZW1wbG8gZGUgZvNybXVsYToNCiMkXGxhcmdlIFxEZWx0YXtnX3szLTR9fT1gciBkZWx0YTJgJCAgJG1UJA0KYGBgDQoNCiQkXGxhcmdlIFxEZWx0YXtnX3szLTR9fT1cIGByIGRlbHRhMmBtVCQkDQoNCg0KDQoNCg0KICZuYnNwOyANCiAmbmJzcDsgDQogJm5ic3A7DQogDQpgYGBzaA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBPcmxhbmRvDQpgYGAgDQoNCg0K