성별 차이, 학번별 차이를 파악하기 위하여 tapply()
활용
kable(t(as.matrix(table("몇 개나 나눠줄래요?" = chocolate), 1)))
kable(table("성별" = sex, "몇 개나 나눠줄래요?" = chocolate))
남 |
1 |
1 |
3 |
5 |
8 |
9 |
1 |
2 |
여 |
1 |
0 |
1 |
6 |
6 |
9 |
0 |
1 |
pander(tapply(chocolate, sex, summary))
pander(tapply(chocolate, year.2, summary))
pander(tapply(chocolate, list(year, sex), function(x) format(mean(x, na.rm = TRUE), digits = 2, nsmall = 1)))
13학번 이후 |
3.2 |
4.2 |
12학번 이전 |
4.6 |
4.0 |
pander(tapply(chocolate, list(year.2, sex), function(x) format(mean(x, na.rm = TRUE), digits = 2, nsmall = 1)))
12학번 이후 |
4.1 |
4.1 |
11학번 이전 |
4.2 |
4.0 |
kable
을 사용하려면 aggregate
활용
chocolate.sex.ag <- aggregate(chocolate ~ sex, data = ew.gorilla.full, summary)
names(chocolate.sex.ag)
## [1] "sex" "chocolate"
chocolate.sex.xtabs <- xtabs(chocolate ~ sex, chocolate.sex.ag)
kable(chocolate.sex.xtabs)
남 |
0 |
3 |
4 |
4.2 |
5 |
10 |
여 |
0 |
3 |
4 |
4.1 |
5 |
10 |
chocolate.year.ag <- aggregate(chocolate ~ year, data = ew.gorilla.full, summary)
names(chocolate.year.ag)
## [1] "year" "chocolate"
chocolate.year.xtabs <- xtabs(chocolate ~ year, chocolate.year.ag)
kable(chocolate.year.xtabs)
13학번 이후 |
0 |
3 |
4 |
3.8 |
5 |
10 |
12학번 이전 |
2 |
3 |
4 |
4.4 |
5 |
10 |
chocolate.year.2.ag <- aggregate(chocolate ~ year.2, data = ew.gorilla.full, summary)
names(chocolate.year.2.ag)
## [1] "year.2" "chocolate"
chocolate.year.2.xtabs <- xtabs(chocolate ~ year.2, chocolate.year.2.ag)
kable(chocolate.year.2.xtabs)
12학번 이후 |
0 |
3 |
4 |
4.1 |
5 |
10 |
11학번 이전 |
2 |
3 |
4 |
4.2 |
5 |
10 |