\[f(x) = x^3 + 2x^2\]
myderv <- function (x) {
h = 1e-6
f_x <- x^3 + 2*x^2
f_x_h <- (x + h)^3 + 2*(x + h)^2
f_derv_x <- (f_x_h - f_x) / h
return(f_derv_x)
}
myderv(5)
## [1] 95.00002
\[3x^2 + 4x\]
interval <- (1e-6)
itr <- (3-1)/(1e-6)
area <- length(1:itr) * (3*interval^2 + 2*interval)
x_dev <- sapply(1:itr, function(x) myderv(1e-6) )
sum(x_dev)
## [1] 12.00001
We will use this form to solve integration by parts \[\lmoustache udv = uv - \lmoustache vdu\]
\[\lmoustache sin(x)cos(x)dx\] We know derivative of sin(x) is cos(x)dx therefore we get, \[u = sin(x), du = cos(x)dx\] \[\lmoustache udu = \frac{1}{2}u^{2} + C\] \[ = \frac{1}{2}sin^2(x) + C\]
\[\lmoustache x^2e^2dx\] \[u = x^2, dv = e^xdx, du = 2xdx, v=2e^x\] \[\lmoustache udv = x^2e^x - \lmoustache 2e^x.2xdx\] We do integration by parts on \[\lmoustache 2e^x.2xdx\] \[u = 2x, du = 2dx, v=e^x, dv=e^xdx\] \[= 2xe^x -2e^x\]
Full Solution: \[\lmoustache x^2e^2dx = x^2e^x - 2xe^x -2e^x + C\]
\[\frac{d}{dx}(xcos(x))\]
By applying product of function, we get \[\frac{d}{dx}(xcos(x))=(\frac{d}{dx}x)cos(x) + x(\frac{d}{dx}cos(x))+ \] \[= cos(x) - xsin(x)\]
\[\frac{d}{dx}e^{x^4}\] \[=4x^3e^4\]