Estimating and pooling dose-response curves from published data

Biostatistics group Meeting, April 8th

Alessio Crippa
Department of Nutritional Epidemiology and Biostatistics
IMM - Institute of Environmental Medicine
Karolinska Institutet

Dose-response relationship

  • Plot of the response on the y-axis versus the dose on the x-axis

  • Response: physiological or biochemical response, risk, counts, ordered descriptive categories (e.g., severity of a lesion), or continuous measurements (e.g., blood pressure)

  • Dose: different levels of an exposure (drug concentration, cups of coffe/day, BMI, etc.

  • Goal: evaluate changes of the response across levels of the exposure

Modeling dose-response associations

  • Categorize quantitative exposure

  • Results are presented in a tabular form

dose cases n RR SE
(ref) \( a_0 \) \( n_0 \) 1 -
\( d_1 \) \( a_1 \) \( n_1 \) \( RR_1 \) \( SE_1 \)
\( \vdots \) \( \vdots \) \( \vdots \) \( \vdots \) \( \vdots \)
\( d_k \) \( a_k \) \( n_k \) \( RR_K \) \( SE_K \)

  • Evaluate changes of the response across levels of the exposure

  • Assessment of the most likely shape of the curve (i.e. linear, J-shaped, U-shaped, etc.)

Two stage procedure

  • Study-specific dose-response models

\[ Y_{i,j} = f(x_{i,j}; \theta_j) + \epsilon_{i,j} \]

  • Several alternatives (splines, polynomials, Emax, Exponential, Linear, etc.)

  • \( \epsilon_{i,j} \) are not independent

  • \( cov(\epsilon_{i,j}) \) can be obtained from published data to efficiently estimate \( \theta_j \) and \( V_j = cov(\theta_j) \)

  • Pool study specific estimates:

\[ \boldsymbol{\hat{\beta_j}} \sim N_p(\boldsymbol{\beta}, \mathbf{V_j}+ \boldsymbol{\psi}) \]

Example: Alcohol intake and colorectal cancer

8 eligible prospective cohort studies participating in the Pooling Project of Prospective Studies of Diet and Cancer.
(http://www.imm.ki.se/biostatistics/glst/)

require("dosresmeta")
require("rms")
web <- "http://alessiocrippa.altervista.org/data/"
alcohol_crc <- read.table(paste0(web, "ex_alcohol_crc.txt"))
head(alcohol_crc)
   id type   dose cases peryears   logrr     se
1 atm   ir  0.000    28    22186  0.0000     NA
2 atm   ir  1.829    38    43031 -0.4167 0.2511
3 atm   ir  9.199    43    53089 -0.3956 0.2456
4 atm   ir 22.857    32    45348 -0.4884 0.2634
5 atm   ir 35.667    16    19791 -0.2790 0.3208
6 atm   ir 58.426    27    19920  0.2023 0.2862
knots <- quantile(alcohol_crc$dose, c(.1, .5, .9))
spl <- dosresmeta(formula = logrr ~ rcs(dose, knots), type = type, 
   cases = cases, n = peryears, id = id, se = se, data = alcohol_crc)
summary(spl)
Call:  dosresmeta(formula = logrr ~ rcs(dose, knots), id = id, type = type, 
    cases = cases, n = peryears, data = alcohol_crc, se = se)

Multivariate random-effects meta-analysis
Dimension: 2
Estimation method: REML
Variance-covariance matrix Psi: unstructured
Approximate covariance method: Greenland & Longnecker

Fixed-effects coefficients
                        Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb
rcs(dose, knots).dose    -0.0014      0.0041  -0.3297    0.7416   -0.0095
rcs(dose, knots).dose'    0.0210      0.0103   2.0446    0.0409    0.0009
                        95%ci.ub   
rcs(dose, knots).dose     0.0068   
rcs(dose, knots).dose'    0.0411  *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Chi2 model: X2 = 27.2269 (df = 2), p-value = 0.0000
Multivariate Cochran Q-test for heterogeneity:
Q = 14.5886 (df = 14), p-value = 0.4068
I-square statistic = 4.0%

8 studies, 16 observations, 2 fixed and 3 random-effects parameters
  logLik       AIC       BIC  
 41.4301  -72.8603  -69.6650  

plot of chunk unnamed-chunk-3

   dose   RR 95%ci.lb 95%ci.ub
1     0 1.00     1.00     1.00
2     5 0.99     0.96     1.03
3    10 0.99     0.92     1.07
4    15 1.00     0.90     1.11
5    20 1.02     0.91     1.15
6    25 1.06     0.93     1.20
7    30 1.10     0.97     1.25
8    35 1.16     1.03     1.31
9    40 1.23     1.09     1.39
10   45 1.32     1.16     1.49
11   50 1.41     1.23     1.61
12   55 1.51     1.29     1.77
13   60 1.63     1.35     1.95

Dose-response meta-analysis of Antipsychotics

  • Randomized placebo-controlled studies of patients with schizophrenia or schizoaffective disorder

  • Outcome is the difference in PANSS (or BPRS) score

  • Standardized Mean Differences (SMD)

dose n PANSS SE
(ref) \( n_0 \) 0 -
\( d_1 \) \( n_1 \) \( y_1 \) \( SE_1 \)
\( \vdots \) \( \vdots \) \( \vdots \) \( \vdots \)
\( d_k \) \( n_k \) \( y_K \) \( SE_K \)

Dose-response meta-analysis of Antipsychotics (2)

\[ SMD_{ij} = \frac{y_{ij} - y_{1j}}{s_{ij}} \; \; , i = 2, \dots, k_j - 1 ; j = 1, \dots, m \]

\[ Var \left( SMD_{ij} \right) = \frac{1}{n_{ij}} + \frac{1}{n_{1j}} + \frac{1}{2*n_j} \; \; , i = 1, \dots, k_j ; j = 1, \dots, m \]

\[ Cov \left( SMD_{ij}, SMD_{i'j} \right) = \frac{1}{n_{1j}} + \frac{ SMD_{ij} * SMD_{i'j}}{2*n_j} \; \; , i != i' ; j = 1, \dots, m \]

Two studies included

  ID      Author Dose   N PBchange SDPBc    smd    vsmd
1  1 Cutler 2006    0  85     5.30 18.31 0.0000 0.00000
2  1 Cutler 2006    2  92     8.23 18.32 0.1600 0.02267
3  1 Cutler 2006    5  89    10.60 18.31 0.2894 0.02312
4  1 Cutler 2006   10  94    11.30 18.32 0.3276 0.02255
5  2 McEvoy 2007    0 107     2.33 26.10 0.0000 0.00000
6  2 McEvoy 2007   10 103    15.04 27.60 0.4803 0.01934
7  2 McEvoy 2007   15 103    11.73 26.20 0.3552 0.01921
8  2 McEvoy 2007   20  97    14.44 25.90 0.4576 0.01991

with the corresponding covariance matrices

$`1`
        [,1]    [,2]    [,3]
[1,] 0.02267 0.01183 0.01184
[2,] 0.01183 0.02312 0.01190
[3,] 0.01184 0.01190 0.02255

$`2`
         [,1]     [,2]     [,3]
[1,] 0.019336 0.009554 0.009614
[2,] 0.009554 0.019208 0.009544
[3,] 0.009614 0.009544 0.019910

Dose-response meta-analysis of Antipsychotics (3)

  • Dose was modeled with restricted cubic splines (3 knots)

  • A large grid of value for the knots location

  • Fit spline models with knots located at the 25, 50, and 75 quantiles of the dose distribution
    \[ SMD_{ij} = \beta_1 x_{1ij} + \beta2 x_{2ij} + \epsilon{ij} \]

  • Select the model which “best” fits the data (minimum AIC)

  • Provide the dose-response relationship

  • Target doses: ED50, near-maximal dose range (ED85; ED95)
    \[ ED_p = min \{d \in (d_1, d_k): f(d) > f(d_1) + p\delta_{max} \} \]

knots <- with(dat, quantile(Dose, c(.25, .5, .75)))
spl <- dosresmeta(formula = smd ~ rcs(Dose, knots), id = ID, v = vsmd, data = dat, 
                  covariance = "user", ucov = vi, method = "reml")
summary(spl)
Call:  dosresmeta(formula = smd ~ rcs(Dose, knots), id = ID, v = vsmd, 
    data = dat, covariance = "user", method = "reml", ucov = vi)

Multivariate random-effects meta-analysis
Dimension: 2
Estimation method: REML
Variance-covariance matrix Psi: unstructured
Approximate covariance method: User defined

Fixed-effects coefficients
                        Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb
rcs(Dose, knots).Dose     0.0476      0.0087   5.4978    0.0000    0.0306
rcs(Dose, knots).Dose'   -0.0329      0.0084  -3.9074    0.0001   -0.0495
                        95%ci.ub     
rcs(Dose, knots).Dose     0.0646  ***
rcs(Dose, knots).Dose'   -0.0164  ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Chi2 model: X2 = 50.1051 (df = 2), p-value = 0.0000
Multivariate Cochran Q-test for heterogeneity:
Q = 2.1727 (df = 8), p-value = 0.9753
I-square statistic = 1.0%

5 studies, 10 observations, 2 fixed and 3 random-effects parameters
  logLik       AIC       BIC  
 23.5446  -37.0892  -36.6920  

plot of chunk unnamed-chunk-8

  dose pred ci.lb ci.ub
1    0 0.00  0.00  0.00
2    5 0.23  0.15  0.31
3   10 0.39  0.26  0.52
4   15 0.44  0.31  0.57
5   20 0.42  0.31  0.54
6   25 0.41  0.28  0.53
7   30 0.39  0.23  0.54
     p     ED      Ep
1 0.20  1.832 0.08764
2 0.50  4.775 0.21910
3 0.85  9.189 0.37247
4 0.95 11.502 0.41629

plot of chunk unnamed-chunk-11

     p EDspl EDEemax   ED2 EDpol
1 0.20  1.83    0.24  2.16   5.0
2 0.50  4.77    0.96  6.04   9.5
3 0.85  9.19    4.68 12.61  15.5
4 0.95 11.50   11.50 15.98  18.5

References

  • Greenland, Sander, and Matthew P. Longnecker. “Methods for trend estimation from summarized dose-response data, with applications to meta-analysis.” American journal of epidemiology 135.11 (1992): 1301-1309.

  • Orsini, Nicola, et al. “Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software.” American journal of epidemiology 175.1 (2012): 66-73.

  • Davis, J. M., & Chen, N. (2004). Dose response and dose equivalence of antipsychotics. Journal of clinical psychopharmacology, 24(2), 192-208.

  • Bornkamp, B., Pinheiro, J., & Bretz, F. (2009). MCPMod: An R package for the design and analysis of dose-finding studies. Journal of Statistical Software, 29(7), 1-23.