\[\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{...}}}}=x\]
\[x+\sqrt{x+\sqrt{x+\sqrt{...}}}=x^2\]
\[\sqrt{x+\sqrt{x+\sqrt{...}}}=x^2-x\]
\[x=x^2-x\]
\[0=x^2-2x\]
\[0=(x)(x-2)\]
equation <- function(x, iter) {
if (iter == 0) {
return(sqrt(x))
} else {
return(sqrt(x+equation(x, iter-1)))
}
}
equation(0,100)[1] 0
equation(2,100)[1] 2
Q.E.D.
# equation(0.1,100)
# equation(0.5,100)
equation(1, 100)[1] 1.618034
There is our good friend \[\phi\] again!
Keep increasing X until we get the answer …
equation(1.1, 100)[1] 1.661895
# ...
# equation(1.8, 100)
# equation(1.99, 100)
equation(2, 100)[1] 2
Make sure it isn’t true for any other values higher than 2 ?
equation(2.1, 100)[1] 2.032971
equation(3, 100)[1] 2.302776