library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
Conflicts with tidy packages -----------------------------------------------------------------------------------------------------------------
filter(): dplyr, stats
lag():    dplyr, stats

pairwise.t.test(video$Puntaje, video$Profesor, p.adj = "none")

    Pairwise comparisons using t tests with pooled SD 

data:  video$Puntaje and video$Profesor 

                 Aguilera..Felipe Araya..Guillermo Arias..Gerardo Donoso..Manuel Loyola..Gerald
Araya..Guillermo 0.86851          -                -              -              -             
Arias..Gerardo   3.5e-05          2.0e-05          -              -              -             
Donoso..Manuel   0.40812          0.32103          0.00043        -              -             
Loyola..Gerald   0.02024          0.02899          3.1e-08        0.00263        -             
Uribe..Sergio    0.86851          0.74058          5.9e-05        0.50801        0.01391       

P value adjustment method: none 
nombres.docentes = c("Araya..Guillermo", "Donoso..Manuel", "Aguilera..Felipe", "Uribe..Sergio")
docentes <- video %>% 
  filter((Profesor %in% nombres.docentes))
pairwise.t.test(docentes$Puntaje, docentes$Profesor, p.adj = "none")

    Pairwise comparisons using t tests with pooled SD 

data:  docentes$Puntaje and docentes$Profesor 

                 Aguilera..Felipe Araya..Guillermo Donoso..Manuel
Araya..Guillermo 0.87             -                -             
Donoso..Manuel   0.40             0.31             -             
Uribe..Sergio    0.87             0.74             0.50          

P value adjustment method: none 

LS0tCnRpdGxlOiAiT0RPTjIxMCAyMDE2IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpgYGAKCmBgYHtyfQp2aWRlbyA8LSByZWFkLmNzdigidmlkZW8yMDE2LmNzdiIsIGhlYWRlciA9IFQpCnZpZGVvIDwtIHZpZGVvICU+JSAKICBnYXRoZXIoIlByb2Zlc29yIiwgIlB1bnRhamUiLCAxOjYpCgpnZ3Bsb3QodmlkZW8sIGFlcyh4PVByb2Zlc29yLCB5PVB1bnRhamUpKSArIAogIGdlb21fYm94cGxvdCgpCgpgYGAKCmBgYHtyfQp0b2RvcyA8LSBhb3YodmlkZW8kUHVudGFqZX52aWRlbyRQcm9mZXNvcikKc3VtbWFyeSh0b2RvcykKcGFpcndpc2UudC50ZXN0KHZpZGVvJFB1bnRhamUsIHZpZGVvJFByb2Zlc29yLCBwLmFkaiA9ICJub25lIikKYGBgCgpgYGB7cn0Kbm9tYnJlcy5kb2NlbnRlcyA9IGMoIkFyYXlhLi5HdWlsbGVybW8iLCAiRG9ub3NvLi5NYW51ZWwiLCAiQWd1aWxlcmEuLkZlbGlwZSIsICJVcmliZS4uU2VyZ2lvIikKZG9jZW50ZXMgPC0gdmlkZW8gJT4lIAogIGZpbHRlcigoUHJvZmVzb3IgJWluJSBub21icmVzLmRvY2VudGVzKSkKcGFpcndpc2UudC50ZXN0KGRvY2VudGVzJFB1bnRhamUsIGRvY2VudGVzJFByb2Zlc29yLCBwLmFkaiA9ICJub25lIikKYGBgCgpgYGB7cn0KY29tcGFyYWNpb24uZG9jZW50ZXMgPC0gYW92KGRvY2VudGVzJFB1bnRhamV+ZG9jZW50ZXMkUHJvZmVzb3IpCnN1bW1hcnkoY29tcGFyYWNpb24uZG9jZW50ZXMpCmdncGxvdChkb2NlbnRlcywgYWVzKHg9UHJvZmVzb3IsIHk9UHVudGFqZSkpICsgCiAgZ2VvbV9ib3hwbG90KCkKCmBgYApgYGB7cn0KdmlkZW8gJT4lIAogIGZpbHRlcihQcm9mZXNvciA9PSAiTG95b2xhLi5HZXJhbGQiIHwgUHJvZmVzb3IgPT0gIkFyaWFzLi5HZXJhcmRvIikgJT4lIAogIGdncGxvdChhZXMoeD1Qcm9mZXNvciwgeT1QdW50YWplKSkgKyAKICBnZW9tX2JveHBsb3QoKQpgYGAKCgpgYGB7cn0KbGlicmFyeShoZXBsb3RzKQpldGFzcShjb21wYXJhY2lvbi5kb2NlbnRlcykKCmBgYAoKYGBge3J9CmV0YXNxKHRvZG9zKQpgYGAKCgo=