To see if this is an AR(1) process, we will make a model that treats each residual as a function of the previous residual.
df.res <- cbind(fit1$model,res = fit1$residuals)
fit.ar1 <- lm(res ~ lag(res), df.res)
summary(fit.ar1)
Call:
lm(formula = res ~ lag(res), data = df.res)
Residuals:
Min 1Q Median 3Q Max
-614285 -87928 4546 92019 323174
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.234e+04 2.168e+04 -0.569 0.571
lag(res) 9.443e-01 3.204e-02 29.469 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 169300 on 59 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.9364, Adjusted R-squared: 0.9353
F-statistic: 868.4 on 1 and 59 DF, p-value: < 2.2e-16