Dose-Response Meta-Analysis:

an Overview

NutEpi JC, 22th May

Alessio Crippa
Department of Nutritional Epidemiology and Biostatistics
IMM - Institute of Environmental Medicine
Karolinska Institutet

Meta-Analysis

  • Increasing number of scientific publications.

  • Systematical literature review supported by statistical methods.

  • Aggregate and contrast findings from several studies.

  • Weighted average of common measure of effect size, with weights related to the precision of the estimates

Dose-response meta-analysis

  • Analyze summarized published data

dose cases n RR SE
(ref) \( a_0 \) \( n_0 \) 1 -
\( d_1 \) \( a_1 \) \( n_1 \) \( RR_1 \) \( SE_1 \)
\( \vdots \) \( \vdots \) \( \vdots \) \( \vdots \) \( \vdots \)
\( d_k \) \( a_k \) \( n_k \) \( RR_K \) \( SE_K \)

  • Evaluate changes of the response across levels of the exposure

  • Assessment of the most likely shape of the curve (i.e. linear, J-shaped, U-shaped, etc.)

Background

  • Study-specific dose-response models

\[ \mathbf{Y_{i,j}} = f(\mathbf{x_{i,j}}; \boldsymbol{\theta_j}) + \boldsymbol{\epsilon_{i,j}} \]

  • Several alternatives (splines, polynomials, linear, etc.)

  • \( \epsilon_{i,j} \) are not independent, can be obtained from published data to efficiently estimate \( \theta_j \) and \( V_j = cov(\theta_j) \)

  • Pool study specific estimates:

\[ \boldsymbol{\hat{\theta_j}} \sim N_p(\boldsymbol{\theta}, \mathbf{V_j}+ \boldsymbol{\psi}) \]

Background

  • Different methods to approximate \( Cov(\boldsymbol{\epsilon_{i,j}}) \)
    (Greenland & Longnecker, Hamling)

  • Formulas differ according to study design
    ("cc", "ir", "ci“)

  • Assess and quantify heterogeneity
    Cochran Q-test, I-squared

  • Information criteria (\( AIC \) , \( BIC \) , \( log\mathcal{L} \))

Main advantages

  • It is more efficient than a categorical approach (it uses the entire exposure information)
  • It is possible to model the quantitative exposure using flexible tools
  • It describes variation in mortality risk across the entire range of the observed exposure (identification of exposure associated with the highest or lowest outcome risk)
  • It reduces the statistical heterogeneity across studies
  • It is possible to plot the pooled relative risks as function of the exposure choosing any appropriate value as referent

Limitations

  • Data not always available (number of cases and non-cases)

  • Sensible to assignment of categories values (especially for the highest category)

  • Unintuitive exposure modeling (especially with non-zero referent doses)

  • Heterogeneity and publication bias

Example: Alcohol intake and colorectal cancer

8 eligible prospective cohort studies participating in the Pooling Project of Prospective Studies of Diet and Cancer.
(http://www.imm.ki.se/biostatistics/glst/)

require("dosresmeta")
web <- "http://alessiocrippa.altervista.org/data/"
alcohol_crc <- read.table(paste0(web, "ex_alcohol_crc.txt"))
head(alcohol_crc)
   id type   dose cases peryears   logrr     se
1 atm   ir  0.000    28    22186  0.0000     NA
2 atm   ir  1.829    38    43031 -0.4167 0.2511
3 atm   ir  9.199    43    53089 -0.3956 0.2456
4 atm   ir 22.857    32    45348 -0.4884 0.2634
5 atm   ir 35.667    16    19791 -0.2790 0.3208
6 atm   ir 58.426    27    19920  0.2023 0.2862

General usage

require("rms")
knots <- quantile(alcohol_crc$dose, c(.1, .5, .9))
spl <- dosresmeta(formula = logrr ~ rcs(dose, knots), 
                  type = type, cases = cases, n = peryears,
                  id = id, se = se, data = alcohol_crc,
                  method = "reml", covariance = "gl")
#?dosresmeta
summary(spl)
arguments Meaning
formula Functional relation
method Fixed vs random effects model
type study design: cc case-control; ci cumulative incidence; ir incidence rate
cases number of cases
n number of non-cases: total subject for cc and ci, person-time for ir data
covariance method to approximate covariance: gl Greenland & Longnecker; h Hamling

https://sites.google.com/site/alessiocrippa/codes

Call:  dosresmeta(formula = logrr ~ rcs(dose, knots), id = id, type = type, 
    cases = cases, n = peryears, data = alcohol_crc, se = se, 
    covariance = "gl", method = "reml")

Multivariate random-effects meta-analysis
Dimension: 2
Estimation method: REML
Variance-covariance matrix Psi: unstructured
Approximate covariance method: Greenland & Longnecker

Fixed-effects coefficients
                        Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb
rcs(dose, knots).dose    -0.0014      0.0041  -0.3297    0.7416   -0.0095
rcs(dose, knots).dose'    0.0210      0.0103   2.0446    0.0409    0.0009
                        95%ci.ub   
rcs(dose, knots).dose     0.0068   
rcs(dose, knots).dose'    0.0411  *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Chi2 model: X2 = 27.2269 (df = 2), p-value = 0.0000
Multivariate Cochran Q-test for heterogeneity:
Q = 14.5886 (df = 14), p-value = 0.4068
I-square statistic = 4.0%

8 studies, 16 observations, 2 fixed and 3 random-effects parameters
  logLik       AIC       BIC  
 41.4301  -72.8603  -69.6650  
newdata <- data.frame(dose=seq(0,60,1))
with(predict(spl, newdata, xref=0), {
 matplot(get("rcs(dose, knots)dose"), 
 cbind(pred, ci.ub, ci.lb), 
 log = "y", type = "l", col = "black",
 lty = c(1, 2, 2), bty = "l", las = 1,
 ylab = "Relative risk", xlab = 
    "Alcohol intake, grams/day")
})
rug(alcohol_crc$dose)

plot of chunk unnamed-chunk-5

...
with(predict(spl,newdata,xref=12),{
...

plot of chunk unnamed-chunk-7

newdata <- data.frame(dose=seq(0,60,12))
round(predict(spl, newdata)[,-2],2)
  rcs(dose, knots)dose pred ci.lb ci.ub
1                    0 1.00  1.00  1.00
2                   12 0.99  0.91  1.09
3                   24 1.05  0.93  1.19
4                   36 1.18  1.04  1.33
5                   48 1.37  1.20  1.56
6                   60 1.63  1.35  1.95
round(predict(spl, newdata, xref=12)[,-2],2)
  rcs(dose, knots)dose pred ci.lb ci.ub
1                    0 1.01  0.92  1.10
2                   12 1.00  1.00  1.00
3                   24 1.05  1.01  1.10
4                   36 1.18  1.11  1.26
5                   48 1.38  1.22  1.56
6                   60 1.63  1.32  2.02

References

  • Greenland, Sander, and Matthew P. Longnecker. “Methods for trend estimation from summarized dose-response data, with applications to meta-analysis.” American journal of epidemiology 135.11 (1992): 1301-1309.

  • Orsini, Nicola, Rino Bellocco, and Sander Greenland. “Generalized least squares for trend estimation of summarized dose-response data.” Stata Journal 6.1 (2006): 40.

  • Orsini, Nicola, et al. “Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software.” American journal of epidemiology 175.1 (2012): 66-73.

  • Larsson, Susanna C., and Nicola Orsini. “Coffee consumption and risk of stroke: a dose-response meta-analysis of prospective studies.” American journal of epidemiology 174.9 (2011): 993-1001.

Interactive Web Application

http://spark.rstudio.com/alecri/dosresmeta/