Data from Busola Electorala between 11 Nov 2016 - 16 Nov 2016
This document provides descriptive statistics, offering an overwiew of the data. It starts by showing the location and other descriptives. If you press Hide, the R code will disappear and you are left with the results. I suggest doing that, it’s easier to read.
library(foreign)
ro <- read.csv("C:/Users/Irina/Desktop/ro2016vaa/roexport2.csv", header = TRUE)
First things first: we want to know how many people went through all 30 statements. We discard the others.
ro <- subset(ro, answered_all_statements != 0)
length(ro$answered_all_statements)
[1] 7310
That leaves us with 7310 people who were able to see their position in the political landscape after going through all statements. You can your position even if you fill out the tool partially, but the results won’t be accurate.
Let’s see where the users come from:
This is additional data we collect, not asked in the survey
ro$country[ro$country==""] <- NA
table(ro$country)
Algeria Australia Austria Belarus
0 1 5 25 1
Belgium Bosnia and Herzegovina Bulgaria Cameroon Canada
70 0 4 1 23
Cape Verde Colombia Croatia Cyprus Czech Republic
1 1 1 1 11
Denmark Finland France Germany Greece
28 2 75 121 0
Guernsey Hong Kong Hungary India Indonesia
1 1 13 4 1
Ireland Israel Italy Japan Lebanon
8 0 33 1 1
Liberia Luxembourg Macedonia Malaysia Malta
1 5 1 1 1
Mexico Monaco Netherlands Nigeria Norway
1 1 55 3 2
Oman Poland Portugal Puerto Rico Qatar
1 9 6 1 1
Republic of Korea Republic of Lithuania Republic of Moldova Romania Serbia
1 2 5 6377 4
Singapore Slovak Republic Slovenia South Sudan Spain
3 1 3 1 25
Sri Lanka Sweden Switzerland Thailand Turkey
1 18 14 1 2
Ukraine United Arab Emirates United Kingdom United States unknown
3 3 205 77 23
Venezuela Vietnam
1 2
If you wanna go really crazy, we can see the cities (let me know if you want that)
Here is the browser from which the tool was accessed: (I have no idea if you care for these details)
table(ro$browser)
Android BlackBerry WebKit Chrome Chrome Mobile
83 12 3217 2005
Chrome Mobile iOS Chromium Edge Epiphany
16 12 60 1
Firefox Firefox Mobile IE IE Mobile
865 26 72 9
Maxthon Mobile Safari Opera Opera Mini
4 566 114 2
Opera Mobile Pale Moon (Firefox Variant) Puffin Safari
9 4 0 215
SeaMonkey UC Browser Vivaldi Yandex Browser
2 1 14 1
let’s have a look at the demographics. We ask these questions in the beginning of the tool, and quite a few people fill in this information. The variables are collected separatelly for people who took the survey on their phone, that’s why there are two variables for gender. You need to look at the last 2 rows, where coded ) are females, code 1 are males. So 5517 men in our sample. This is quite normal, as men are more interested in politics than women.
From the 7310 who went through all the statements, about half filled out the demographic questions
ro$male <- ifelse(ro$background_question_0==0, 1,
ifelse(ro$background_question_0==1, 0,
NA))
ro$malem <- ifelse(ro$background_question_1_is_mobile==0, 1,
ifelse(ro$background_question_1_is_mobile==1, 0,
NA))
ro$male[is.na(ro$male)] <- ro$malem[is.na(ro$male)]
table(ro$male)
0 1
1262 2420
Now we move on to age. I’ll create age categories, 18-29 coded 1, 30-49 coded 2, 50-64 coded 3 and 65+ coded 4
ro$age <- 2016 - (ro$background_question_2 + 1910)
ro$age[ro$age < 18] <- NA
ro$age[ro$age >= 18 & ro$age <= 29] <- 1
ro$age[ro$age >= 30 & ro$age <= 49] <- 2
ro$age[ro$age >= 50 & ro$age <= 64] <- 3
ro$age[ro$age >= 65] <- 4
ro$agea <- 2016 - (ro$background_question_3_is_mobile + 1910)
ro$agea[ro$agea < 18] <- NA
ro$agea[ro$agea >= 18 & ro$agea <= 29] <- 1
ro$agea[ro$agea >= 30 & ro$agea <= 49] <- 2
ro$agea[ro$agea >= 50 & ro$agea <= 64] <- 3
ro$agea[ro$agea >= 65] <- 4
ro$age[is.na(ro$age)] <- ro$agea[is.na(ro$age)]
table(ro$age)
1 2 3 4
1602 1792 223 56
We move on to education 0 - no education, 1 - elementary school, 2 - high school, 3 - university degree, master and PhD, 4 - post doctoral studies
ro$edu <- ifelse(ro$background_question_4==0, 0,
ifelse(ro$background_question_4==1, 1,
ifelse(ro$background_question_4==2, 2,
ifelse(ro$background_question_4==4, 4,
ifelse(ro$background_question_4=="Facultate\nMasterat/Doctorat", 3,
ifelse(ro$background_question_4=="Posztgraduális végzettség ", 4,
NA))))))
ro$edum <- ifelse(ro$background_question_5_is_mobile==0, 0,
ifelse(ro$background_question_5_is_mobile==1, 1,
ifelse(ro$background_question_5_is_mobile==2, 2,
ifelse(ro$background_question_5_is_mobile==4, 4,
ifelse(ro$background_question_5_is_mobile=="Facultate\nMasterat/Doctorat", 3,
ifelse(ro$background_question_5_is_mobile=="Posztgraduális végzettség ", 4,
NA))))))
ro$edu[is.na(ro$edu)] <- ro$edum[is.na(ro$edu)]
table(ro$edu)
0 1 2 3 4
9 43 661 2671 218
As expected, mostly highly educated people.
Now, we can see he city where people intend to vote (for this type of election, you can only vote in the electoral circumscription you belong to)
ro$location <- 0
ro$location[is.na(ro$background_question_8)] <- NA # overwrite 0's with NA's if background_question_8 is NA
ro$location[ro$background_question_8==0] <- "Alba"
ro$location[ro$background_question_8==1] <- "Arad"
ro$location[ro$background_question_8==2] <- "Arges"
ro$location[ro$background_question_8==3] <- "Bacau"
ro$location[ro$background_question_8==4] <- "Bihor"
ro$location[ro$background_question_8==5] <- "Bistrita-Nasaud"
ro$location[ro$background_question_8==6] <- "Botosani"
ro$location[ro$background_question_8==7] <- "Brasov"
ro$location[ro$background_question_8==8] <- "Braila"
ro$location[ro$background_question_8==9] <- "Bucuresti"
ro$location[ro$background_question_8==10] <- "Buzau"
ro$location[ro$background_question_8==11] <- "Caras-Severin"
ro$location[ro$background_question_8==12] <- "Calarasi"
ro$location[ro$background_question_8==13] <- "Cluj"
ro$location[ro$background_question_8==14] <- "Constanta"
ro$location[ro$background_question_8==15] <- "Covasna"
ro$location[ro$background_question_8==16] <- "Dambovita"
ro$location[ro$background_question_8==17] <- "Dolj"
ro$location[ro$background_question_8==18] <- "Galati"
ro$location[ro$background_question_8==19] <- "Giurgiu"
ro$location[ro$background_question_8==20] <- "Gorj"
ro$location[ro$background_question_8==21] <- "harghita"
ro$location[ro$background_question_8==22] <- "Hunedoara"
ro$location[ro$background_question_8==23] <- "Ialomita"
ro$location[ro$background_question_8==24] <- "Iasi"
ro$location[ro$background_question_8==25] <- "Ilfov"
ro$location[ro$background_question_8==26] <- "Maramures"
ro$location[ro$background_question_8==27] <- "Mehendinti"
ro$location[ro$background_question_8==28] <- "Mures"
ro$location[ro$background_question_8==29] <- "Neamt"
ro$location[ro$background_question_8==30] <- "Olt"
ro$location[ro$background_question_8==31] <- "Prahova"
ro$location[ro$background_question_8==32] <- "Satu Mare"
ro$location[ro$background_question_8==33] <- "Salaj"
ro$location[ro$background_question_8==34] <- "Sibiu"
ro$location[ro$background_question_8==35] <- "Suceava"
ro$location[ro$background_question_8==36] <- "Teleorman"
ro$location[ro$background_question_8==37] <- "Timis"
ro$location[ro$background_question_8==38] <- "Tulcea"
ro$location[ro$background_question_8==39] <- "Vaslui"
ro$location[ro$background_question_8==40] <- "Valcea"
ro$location[ro$background_question_8==41] <- "Vrancea"
ro$location[ro$background_question_8==42] <- "Strainatate"
ro$locationm <- 0
ro$locationm[is.na(ro$background_question_9_is_mobile)] <- NA # overwrite 0's with NA's if background_question_8 is NA
ro$locationm[ro$background_question_9_is_mobile==0] <- "Alba"
ro$locationm[ro$background_question_9_is_mobile==1] <- "Arad"
ro$locationm[ro$background_question_9_is_mobile==2] <- "Arges"
ro$locationm[ro$background_question_9_is_mobile==3] <- "Bacau"
ro$locationm[ro$background_question_9_is_mobile==4] <- "Bihor"
ro$locationm[ro$background_question_9_is_mobile==5] <- "Bistrita-Nasaud"
ro$locationm[ro$background_question_9_is_mobile==6] <- "Botosani"
ro$locationm[ro$background_question_9_is_mobile==7] <- "Brasov"
ro$locationm[ro$background_question_9_is_mobile==8] <- "Braila"
ro$locationm[ro$background_question_9_is_mobile==9] <- "Bucuresti"
ro$locationm[ro$background_question_9_is_mobile==10] <- "Buzau"
ro$locationm[ro$background_question_9_is_mobile==11] <- "Caras-Severin"
ro$locationm[ro$background_question_9_is_mobile==12] <- "Calarasi"
ro$locationm[ro$background_question_9_is_mobile==13] <- "Cluj"
ro$locationm[ro$background_question_9_is_mobile==14] <- "Constanta"
ro$locationm[ro$background_question_9_is_mobile==15] <- "Covasna"
ro$locationm[ro$background_question_9_is_mobile==16] <- "Dambovita"
ro$locationm[ro$background_question_9_is_mobile==17] <- "Dolj"
ro$locationm[ro$background_question_9_is_mobile==18] <- "Galati"
ro$locationm[ro$background_question_9_is_mobile==19] <- "Giurgiu"
ro$locationm[ro$background_question_9_is_mobile==20] <- "Gorj"
ro$locationm[ro$background_question_9_is_mobile==21] <- "harghita"
ro$locationm[ro$background_question_9_is_mobile==22] <- "Hunedoara"
ro$locationm[ro$background_question_9_is_mobile==23] <- "Ialomita"
ro$locationm[ro$background_question_9_is_mobile==24] <- "Iasi"
ro$locationm[ro$background_question_9_is_mobile==25] <- "Ilfov"
ro$locationm[ro$background_question_9_is_mobile==26] <- "Maramures"
ro$locationm[ro$background_question_9_is_mobile==27] <- "Mehendinti"
ro$locationm[ro$background_question_9_is_mobile==28] <- "Mures"
ro$locationm[ro$background_question_9_is_mobile==29] <- "Neamt"
ro$locationm[ro$background_question_9_is_mobile==30] <- "Olt"
ro$locationm[ro$background_question_9_is_mobile==31] <- "Prahova"
ro$locationm[ro$background_question_9_is_mobile==32] <- "Satu Mare"
ro$locationm[ro$background_question_9_is_mobile==33] <- "Salaj"
ro$locationm[ro$background_question_9_is_mobile==34] <- "Sibiu"
ro$locationm[ro$background_question_9_is_mobile==35] <- "Suceava"
ro$locationm[ro$background_question_9_is_mobile==36] <- "Teleorman"
ro$locationm[ro$background_question_9_is_mobile==37] <- "Timis"
ro$locationm[ro$background_question_9_is_mobile==38] <- "Tulcea"
ro$locationm[ro$background_question_9_is_mobile==39] <- "Vaslui"
ro$locationm[ro$background_question_9_is_mobile==40] <- "Valcea"
ro$locationm[ro$background_question_9_is_mobile==41] <- "Vrancea"
ro$locationm[ro$background_question_9_is_mobile==42] <- "Strainatate"
ro$location[is.na(ro$location)] <- ro$locationm[is.na(ro$location)]
table(ro$location)
Alba Arad Arges Bacau Bihor Bistrita-Nasaud Botosani Braila
56 26 51 43 69 28 13 17
Brasov Bucuresti Buzau Calarasi Caras-Severin Cluj Constanta Covasna
98 1471 37 19 9 354 106 5
Dambovita Dolj Galati Giurgiu Gorj harghita Hunedoara Ialomita
32 54 42 8 17 9 33 19
Iasi Ilfov Maramures Mehendinti Mures Neamt Olt Prahova
153 82 35 18 46 31 18 80
Salaj Satu Mare Sibiu Strainatate Suceava Teleorman Timis Tulcea
6 19 66 270 41 25 138 21
Valcea Vaslui Vrancea
25 23 25
We break down the location according to regions (NUTS2). I am doing this because the ultimate goal is to weight the data (using census data, trying to make the data more representative. this is just the nerd in me)
ro$regiune <- 0
ro$regiune[is.na(ro$location)] <- NA # overwrite 0's with NA's if background_question_8 is NA
# Nord-Vest â RO11; Bihor, Bistrita-Nasaud, Cluj, Maramures, Satu Mare, Salaj
ro$regiune[ro$location=="Bihor"] <- "RO11"
ro$regiune[ro$location=="Cluj"] <- "RO11"
ro$regiune[ro$location=="Bistrita-Nasaud"]<-"RO11"
ro$regiune[ro$location=="Maramures"] <- "RO11"
ro$regiune[ro$location=="Satu Mare"] <- "RO11"
ro$regiune[ro$location=="Salaj"] <- "RO11"
# Centru â RO12; Alba, Brasov, Covasna, Harghita, Mures, Sibiu
ro$regiune[ro$location=="Alba"] <- "RO12"
ro$regiune[ro$location=="Brasov"] <- "RO12"
ro$regiune[ro$location=="Covasna"] <- "RO12"
ro$regiune[ro$location=="Harghita"] <- "RO12"
ro$regiune[ro$location=="Mures"] <- "RO12"
ro$regiune[ro$location=="Sibiu"] <- "RO12"
# Nord-Est â RO21; Bacau, Botosani, Iasi, Neamt, Suceava, Vaslui
ro$regiune[ro$location=="Bacau"] <- "RO21"
ro$regiune[ro$location=="Botosani"] <- "RO21"
ro$regiune[ro$location=="Iasi"] <- "RO21"
ro$regiune[ro$location=="Neamt"] <- "RO21"
After we have an idea about who the users are and where they come from, let’s look into their political affilition. Here we see for which coalition they voted for in the last parliamentary elections of 2012. Here we miss quite a few users, because they dont remember who they voted for.
ro$voterec <- 0
ro$voterec[is.na(ro$background_question_10)] <- NA
ro$voterec <- ifelse(ro$background_question_10==0, "USL",
ifelse(ro$background_question_10==1, "ARD",
ifelse(ro$background_question_10==2, "PPDD",
ifelse(ro$background_question_10==3, "UDMR",
ifelse(ro$background_question_10==4, "other",
ifelse(ro$background_question_10==6, "did not vote",
NA))))))
ro$voterecm <- 0
ro$voterecm[is.na(ro$background_question_11_is_mobile)] <- NA
ro$voterecm <- ifelse(ro$background_question_11_is_mobile==0, "USL",
ifelse(ro$background_question_11_is_mobile==1, "ARD",
ifelse(ro$background_question_11_is_mobile==2, "PPDD",
ifelse(ro$background_question_11_is_mobile==3, "UDMR",
ifelse(ro$background_question_11_is_mobile==4, "other",
ifelse(ro$background_question_11_is_mobile==6, "did not vote",
NA))))))
ro$voterec[is.na(ro$voterec)] <- ro$voterecm[is.na(ro$voterec)]
table(ro$voterec)
ARD did not vote other PPDD UDMR USL
461 863 253 40 51 707
We can see who they intend to vote for, which is quite exciting
table(ro$popup_question_6)
0 1 2 3 4 5
137 87 372 37 1931 263
ro$voteint <- ifelse(ro$popup_question_6==0, "PSD",
ifelse(ro$popup_question_6==1, "ALDE",
ifelse(ro$popup_question_6==2, "PNL",
ifelse(ro$popup_question_6==3, "UDMR",
ifelse(ro$popup_question_6==4, "USR",
ifelse(ro$popup_question_6==5, "other",
NA))))))
table(ro$voteint)
ALDE other PNL PSD UDMR USR
87 263 372 137 37 1931
Next, we can see how users answered on the statements. 1 means “Completely dissagree, 3,”Neither agree nor disagree“, 5”“Completely agree”, -1 “No opinion”
Free market makes the health system to function better
Competitia economica libera face sistemul de sanatate sa functioneze mai eficient
table(ro$statement_0)
-1 1 2 3 4 5
248 387 1022 1604 2712 1337
The number of employees in the public sector should be reduced
Numarul angajatilor din sectorul public ar trebui redus
table(ro$statement_1)
-1 1 2 3 4 5
71 267 732 1125 2561 2554
The state should intervene in the economy as little as possible
Statul ar trebui sa intervina cat mai putin posibil in economie
table(ro$statement_2)
-1 1 2 3 4 5
64 472 1456 1570 2443 1305
Romania should adopt a progressive taxation system
Romania ar trebui sa adopte un sistem de taxare progresiva
table(ro$statement_3)
-1 1 2 3 4 5
216 762 1178 1079 2727 1348
Foreign investors are a threat to Romania’s national sovereignty
Investitorii straini sunt o amenintare la suveranitatea nationala a Romaniei
table(ro$statement_4)
-1 1 2 3 4 5
54 3800 2141 828 318 169
VTA should be reduced under 20%
TVA trebuie redus sub pragul de 20%
table(ro$statement_5)
-1 1 2 3 4 5
171 144 573 1863 2925 1634
Romania should never adopt the euro
Romania ar trebui sa nu adopte niciodata moneda Euro
table(ro$statement_6)
-1 1 2 3 4 5
136 1990 2154 1608 862 560
International actors (such as EU or USA) have the right to intervene in Romania’s internal affairs if the state of democracy is threatend
Partenerii internationali (precum UE sau SUA) pot interveni in afacerile interne ale Romaniei atunci cand exista o amenintare la adresa democratiei
table(ro$statement_7)
-1 1 2 3 4 5
68 974 1277 1147 2803 1041
The strategic partnership with USA is essential for Romania’s national security
Parteneriatul strategic cu SUA este esential pentru securitatea nationala
table(ro$statement_8)
-1 1 2 3 4 5
70 266 428 1162 3056 2328
Women should be able to decide on any matters related to abortion
Femeile ar trebui sa aiba libertatea de a decide asupra chestiunilor legate de avort
table(ro$statement_9)
-1 1 2 3 4 5
41 197 206 321 1610 4935
Romania should not receive refugees that try to enter the EU
Romania ar trebui sa accepte mai multi migranti care intra in UE, ca semn de solidaritate
table(ro$statement_10)
-1 1 2 3 4 5
86 1302 1374 1910 1759 879
Gay couples should have the same rights as the heterosexual ones
Cuplurile homosexuale ar trebui sa se bucure de aceleasi drepturi ca si cuplurile heterosexuale
table(ro$statement_11)
-1 1 2 3 4 5
62 812 579 837 1603 3417
Smoking should be prohibited in all the public places, even the open-space ones
Fumatul trebuie interzis in toate locurile publice, chiar si cele deschise
table(ro$statement_12)
-1 1 2 3 4 5
47 1150 1873 1155 1444 1641
Immigrants should adopt the values and culture of Romania
Imigrantii ar trebui sa se adapteze la valorile si cultura Romaniei
table(ro$statement_13)
-1 1 2 3 4 5
52 142 486 1204 2873 2553
Romania should pursue state unification with Moldova
Romania ar trebui sa urmareasca reunificarea statala cu Republica Moldova
table(ro$statement_14)
-1 1 2 3 4 5
135 1016 1427 2203 1535 994
A territorial reform should include the creation of an autonomous Hungarian region
O reforma teritoriala ar trebui sa includa crearea unei regiuni maghiare autonome
table(ro$statement_15)
-1 1 2 3 4 5
89 3340 2276 1049 409 147
The state should give privileged status to the orthodox church
Statul ar trebui sa acorde un statut privilegiat Bisericii Ortodoxe
table(ro$statement_16)
-1 1 2 3 4 5
41 5248 1265 442 198 116
The electoral treshold should be lowered, so smaller parties can gain access to the parliament
Pragul electoral ar trebui redus pentru a permite intrarea partidelor mai mici în parlament
table(ro$statement_17)
-1 1 2 3 4 5
93 529 859 979 2536 2314
The electoral reform should include lowering the number of signatures needed for candidacy for all election types
Numarul de semnaturi pentru candidatura la toate tipurile de alegeri ar trebui redus
table(ro$statement_18)
-1 1 2 3 4 5
113 343 672 922 2440 2820
The number of polling stations for diaspora should be increased for all election types
Numarul de sectii de votare in diaspora trebuie marit pentru toate tipurile de alegeri
table(ro$statement_19)
-1 1 2 3 4 5
61 126 228 674 2547 3674
The postal vote should be introduced for all election types
Votul prin corespondenta ar trebui introdus pentru toate tipurile de alegeri
table(ro$statement_20)
-1 1 2 3 4 5
78 187 276 599 2304 3866
The digitalization of the judicial process should be continued by publishing on-line all the decisions
Digitalizarea procesului judiciar trebuie continuata prin publicarea on-line a tuturor hotararilor judecatoresti
table(ro$statement_21)
-1 1 2 3 4 5
58 44 64 227 2216 4701
Government’s public information must be accessible online
Informatiile publice ale guvernului ar trebui sa fie accesibile on-line
table(ro$statement_22)
-1 1 2 3 4 5
20 19 20 62 1675 5514
The open vote should be introduced for all decisions made in the parliament
Votul deschis trebuie introdus pentru toate deciziile luate in Parlament
table(ro$statement_23)
-1 1 2 3 4 5
100 69 282 550 1929 4380
Politicians prosecuted for corruption should give up any public function
Politicienii urmariti penal pentru fapte de coruptie trebuie sa renunte la orice functie publica
table(ro$statement_24)
-1 1 2 3 4 5
31 171 340 452 1179 5137
MPs should enjoy immunity rights only for votes and declarations
Parlamentarii ar trebui sa aiba imunitate doar pentru voturi si declaratii
table(ro$statement_25)
-1 1 2 3 4 5
112 213 333 649 2088 3915
Governments formed exclusivelly from non-partisan tehnocrats work better than those formed from politicians
Guvernele formate exclusiv din tehnocrati neafiliati politic functioneaza mai bine decat cele formate din politicieni
table(ro$statement_26)
-1 1 2 3 4 5
111 544 651 2034 2125 1845
Prosecutors have too much power in prosecuting citizens
Procurorii au prea multa putere în ceea ce priveste anchetarea cetatenilor
table(ro$statement_27)
-1 1 2 3 4 5
281 903 2078 2604 995 449
The Mechanism of Cooperation and Verification, which tracks progress in the judiciary system reform should be maintained
Mecanismul de Cooperare si Verificare, prin care se verifica progresele in reformarea justitiei, ar trebui inlaturat
table(ro$statement_28)
-1 1 2 3 4 5
523 1735 2513 1812 472 255
Romania should work on strengthening its diplomatic relations with Rusia
Romania ar trebui sa isi consolideze relatiile diplomatice cu Rusia
table(ro$statement_29)
-1 1 2 3 4 5
199 854 1048 2378 2377 454
Interest in politics 0 very much, 3 not at all
ro$popup_question_2[ro$popup_question_2==4] <- NA
table(ro$popup_question_2)
0 1 2 3
1538 1142 199 37
Left-right self-positioning, 0 left 10 right
ro$popup_question_3[ro$popup_question_3==11] <- NA
ro$popup_question_3[ro$popup_question_3==12] <- NA
table(ro$popup_question_3)
0 1 2 3 4 5 6 7 8 9 10
28 62 64 161 173 455 299 555 501 183 337
Evaluation of Ciolos’ government performance 0 very good, 4 very bad, 5 don’t know
table(ro$popup_question_4)
0 1 2 3 4 5
1197 1168 97 25 272 138