Jying-Nan Wang
2016-11-21
資料來源: DataCamp (https://www.datacamp.com)
看看資料的樣子
library(MASS)
# A data frame with average brain (kg) and body (g) weights for 62 species of land mammals
head(mammals, 10)## body brain
## Arctic fox 3.385 44.5
## Owl monkey 0.480 15.5
## Mountain beaver 1.350 8.1
## Cow 465.000 423.0
## Grey wolf 36.330 119.5
## Goat 27.660 115.0
## Roe deer 14.830 98.2
## Guinea pig 1.040 5.5
## Verbet 4.190 58.0
## Chinchilla 0.425 6.4
利用ggplot2畫出scatter plot,你發現什麼嗎?
library(ggplot2)
ggplot(mammals, aes(x = body, y = brain)) +
geom_point()加上其趨勢線
將原始資料取log10()
美化一下
iris dataset中記錄了不同種類(Species)的花,其花萼(sepal)與花瓣 (petal)的長與寬,以下為資料的摘要:
str(iris)## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris)## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
Graphics = distinct layers of grammatical elements
Meaningful plots through aesthetic mapping
資料來源: DataCamp (https://www.datacamp.com)
iris## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
## 101 6.3 3.3 6.0 2.5 virginica
## 102 5.8 2.7 5.1 1.9 virginica
## 103 7.1 3.0 5.9 2.1 virginica
## 104 6.3 2.9 5.6 1.8 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 106 7.6 3.0 6.6 2.1 virginica
## 107 4.9 2.5 4.5 1.7 virginica
## 108 7.3 2.9 6.3 1.8 virginica
## 109 6.7 2.5 5.8 1.8 virginica
## 110 7.2 3.6 6.1 2.5 virginica
## 111 6.5 3.2 5.1 2.0 virginica
## 112 6.4 2.7 5.3 1.9 virginica
## 113 6.8 3.0 5.5 2.1 virginica
## 114 5.7 2.5 5.0 2.0 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 116 6.4 3.2 5.3 2.3 virginica
## 117 6.5 3.0 5.5 1.8 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 120 6.0 2.2 5.0 1.5 virginica
## 121 6.9 3.2 5.7 2.3 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 124 6.3 2.7 4.9 1.8 virginica
## 125 6.7 3.3 5.7 2.1 virginica
## 126 7.2 3.2 6.0 1.8 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 128 6.1 3.0 4.9 1.8 virginica
## 129 6.4 2.8 5.6 2.1 virginica
## 130 7.2 3.0 5.8 1.6 virginica
## 131 7.4 2.8 6.1 1.9 virginica
## 132 7.9 3.8 6.4 2.0 virginica
## 133 6.4 2.8 5.6 2.2 virginica
## 134 6.3 2.8 5.1 1.5 virginica
## 135 6.1 2.6 5.6 1.4 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 137 6.3 3.4 5.6 2.4 virginica
## 138 6.4 3.1 5.5 1.8 virginica
## 139 6.0 3.0 4.8 1.8 virginica
## 140 6.9 3.1 5.4 2.1 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 142 6.9 3.1 5.1 2.3 virginica
## 143 5.8 2.7 5.1 1.9 virginica
## 144 6.8 3.2 5.9 2.3 virginica
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point(alpha = 0.5)or
ggplot(iris, aes(x = Sepal.Width)) +
geom_histogram(bins=10,fill="SkyBlue",col="Black",aes(y=..density..))ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point(alpha = 0.5) +
facet_grid(Species ~ .)or
ggplot(iris, aes(x = Sepal.Width)) +
geom_histogram(bins=10,fill="SkyBlue",col="Black",aes(y=..density..))+
facet_grid(. ~ Species)ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point(alpha = 0.5) +
facet_grid(Species ~ .) +
stat_smooth(method = "lm", se = T, col = "red", fullrange = TRUE)or
ggplot(iris, aes(x = Sepal.Width)) +
geom_histogram(bins=10,fill="SkyBlue",col="Black",aes(y=..density..))+
facet_grid(. ~ Species) +
stat_ecdf(n=10,col = "red")ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point(alpha = 0.5) +
facet_grid(Species ~ .) +
stat_smooth(method = "lm", se = T, col = "red", fullrange = TRUE)+
scale_y_continuous("Sepal Width (cm)",limits = c(1,6),expand = c(0,0)) +
scale_x_continuous("Sepal Length (cm)", limits = c(3,9), expand = c(0,0)) +
coord_equal() or
ggplot(iris, aes(x = Sepal.Width)) +
geom_histogram(bins=10,fill="SkyBlue",col="Black",aes(y=..density..))+
facet_grid(. ~ Species) +
stat_ecdf(n=10,col = "red")+
scale_y_continuous("Freqeuncy",limits = c(0,1.2),expand = c(0,0)) +
scale_x_continuous("Sepal Width (cm)", limits = c(1,5), expand = c(0,0)) +
coord_fixed(ratio = 2)ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point(alpha = 0.5) +
facet_grid(Species ~ .) +
stat_smooth(method = "lm", se = T, col = "red", fullrange = TRUE)+
scale_y_continuous("Sepal Width (cm)",limits = c(1,6),expand = c(0,0)) +
scale_x_continuous("Sepal Length (cm)", limits = c(3,9), expand = c(0,0)) +
coord_equal() +
theme(panel.background = element_blank(),
legend.key = element_blank(),
legend.background = element_blank(),
strip.background = element_blank(),
plot.background = element_rect(color = "black", size =1),
panel.grid = element_blank(),
axis.line = element_line(color = "black"),
axis.ticks = element_line(color = "black"),
strip.text = element_text(size = 12, color = "red"),
axis.title.y = element_text(color = "red", hjust = 0.5, face = "italic"),
axis.title.x = element_text(color = "red", hjust = 0, face = "italic"),
axis.text = element_text(color = "black"),
legend.position = "none")or
ggplot(iris, aes(x = Sepal.Width)) +
geom_histogram(bins=10,fill="SkyBlue",col="Black",aes(y=..density..))+
facet_grid(. ~ Species) +
stat_ecdf(n=10,col = "red")+
scale_y_continuous("Freqeuncy",limits = c(0,1.2),expand = c(0,0)) +
scale_x_continuous("Sepal Width (cm)", limits = c(1,5), expand = c(0,0)) +
coord_fixed(ratio = 2) +
theme_light()plot(iris$Sepal.Length, iris$Sepal.Width)plot(iris$Sepal.Length, iris$Sepal.Width)
points(iris$Petal.Length, iris$Petal.Width, col = "red")str(iris)## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
library(ggplot2)
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point()p <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width))
# 第一張圖
p + geom_point()# 第二張圖
p + geom_jitter()p <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point()
# 第三張圖
pggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point() +
geom_point(aes(x = Petal.Length, y = Petal.Width), col = "red")library(tidyr)
# 資料型式1
str(iris)## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
# 資料型式2
iris_long <- gather(iris,measure,val,-Species)
str(iris_long)## 'data.frame': 600 obs. of 3 variables:
## $ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ measure: chr "Sepal.Length" "Sepal.Length" "Sepal.Length" "Sepal.Length" ...
## $ val : num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
# 資料型式3
iris_long2 <- separate(iris_long, measure, c("type", "LW"),sep="\\.")
str(iris_long2)## 'data.frame': 600 obs. of 4 variables:
## $ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ type : chr "Sepal" "Sepal" "Sepal" "Sepal" ...
## $ LW : chr "Length" "Length" "Length" "Length" ...
## $ val : num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
# 資料型式4
dat1 <- iris[,c(1,3,5)]
names(dat1) <- c("Sepal","Petal","Species")
dat1_long <- gather(dat1,Part, Length, -Species)
dat2 <- iris[,c(2,4,5)]
names(dat2) <- c("Sepal","Petal","Species")
dat2_long <- gather(dat2,Part, Width, -Species)
iris_wide <- cbind(dat1_long,Width=dat2_long$Width)
str(iris_wide)## 'data.frame': 300 obs. of 4 variables:
## $ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Part : chr "Sepal" "Sepal" "Sepal" "Sepal" ...
## $ Length : num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
p <- ggplot(iris_long2, aes(x = LW, y = val, col = type))
p + geom_jitter(width=0.5,alpha=0.6)p <- ggplot(iris_long2, aes(x = Species, y = val, shape = type))
p + geom_jitter(width=0.5)dat_setosa <- subset(iris_long2, Species=="setosa")
dat_versicolor <- subset(iris_long2, Species=="versicolor")
dat_virginica <- subset(iris_long2, Species=="virginica")
p1 <- ggplot(dat_setosa, aes(x = LW, y = val, col = type)) +
geom_jitter(width=0.7) +
ggtitle("setosa")
p2 <- ggplot(dat_versicolor, aes(x = LW, y = val, col = type)) +
geom_jitter(width=0.7) +
ggtitle("versicolor")
p3 <- ggplot(dat_virginica, aes(x = LW, y = val, col = type)) +
geom_jitter(width=0.7) +
ggtitle("virginica")
library(gridExtra)
grid.arrange(p1,p2,p3, ncol=3)p <- ggplot(iris_long2, aes(x = LW, y = val, col = type)) +
geom_jitter(width=0.7) +
facet_grid(.~Species) +
ggtitle("iris")
pp <- ggplot(iris_long2, aes(x = LW, y = val, col = type)) +
geom_jitter(width=0.7) +
facet_grid(type~Species) +
ggtitle("iris")
pggplot(iris_wide, aes(x = Length, y = Width, shape = Part)) +
geom_jitter(alpha=0.6)ggplot(iris_wide, aes(x = Length, y = Width, shape = Species,col=Part)) +
geom_jitter(alpha=0.8)ggplot(iris_wide, aes(x = Length, y = Width, col=Part)) +
geom_jitter(alpha=0.8) +
facet_grid(.~Species)ggplot(iris_wide, aes(x = Part, y = Width, col=Length)) +
geom_jitter(alpha=0.8) +
facet_grid(.~Species)ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point()ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point(col=rgb(0.1,0.6,0.44)) ggplot(iris, aes(x = Sepal.Length,
y = Sepal.Width,
col=Species)) +
geom_point()ggplot(iris) +
geom_point(aes(x = Sepal.Length,
y = Sepal.Width,
col = Species))| Aesthetic | Description |
|---|---|
| x | X axis position |
| y | Y axis position |
| colour | Colour of dots, outlines of other shapes |
| fill | Fill colour |
| size | Diameter of points, thickness of lines |
| alpha | Transparency |
| linetype | Line dash pa ern |
| labels | Text on a plot or axes |
| shape | Shape |
ggplot(iris) +
geom_point(aes(x = Sepal.Length,
y = Sepal.Width,colour=Species,alpha=Species),shape=17,size=2)ggplot(iris, aes(x = Sepal.Length,
y = Sepal.Width,colour=Species,linetype=Species)) +
geom_line()ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
geom_point(position = "jitter") +
scale_x_continuous("Sepal Length",
limits = c(2, 8),
breaks = seq(2, 8, 1.5)) ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, shape = Species, col = Species)) +
geom_point(position = "jitter") +
scale_x_continuous("Sepal Length",
limits = c(4, 8),
breaks = seq(4, 8, 0.2),
expand = c(0,0)) +
scale_shape_discrete("Legend title",
labels = c("Setosa1", "Versicolour2", "Virginica3"))+
scale_color_discrete("Legend title2",
labels = c("Setosa4", "Versicolour5", "Virginica6"))ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
geom_point(position = "jitter") +
labs(x = "Sepal Length1", y = "Sepal Width1", col = "TEST1")在這個 Case Study中,請同學使用 hflights 這個資料集
library(hflights)
library(ggplot2)
library(dplyr)
str(hflights)## 'data.frame': 227496 obs. of 21 variables:
## $ Year : int 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
## $ Month : int 1 1 1 1 1 1 1 1 1 1 ...
## $ DayofMonth : int 1 2 3 4 5 6 7 8 9 10 ...
## $ DayOfWeek : int 6 7 1 2 3 4 5 6 7 1 ...
## $ DepTime : int 1400 1401 1352 1403 1405 1359 1359 1355 1443 1443 ...
## $ ArrTime : int 1500 1501 1502 1513 1507 1503 1509 1454 1554 1553 ...
## $ UniqueCarrier : chr "AA" "AA" "AA" "AA" ...
## $ FlightNum : int 428 428 428 428 428 428 428 428 428 428 ...
## $ TailNum : chr "N576AA" "N557AA" "N541AA" "N403AA" ...
## $ ActualElapsedTime: int 60 60 70 70 62 64 70 59 71 70 ...
## $ AirTime : int 40 45 48 39 44 45 43 40 41 45 ...
## $ ArrDelay : int -10 -9 -8 3 -3 -7 -1 -16 44 43 ...
## $ DepDelay : int 0 1 -8 3 5 -1 -1 -5 43 43 ...
## $ Origin : chr "IAH" "IAH" "IAH" "IAH" ...
## $ Dest : chr "DFW" "DFW" "DFW" "DFW" ...
## $ Distance : int 224 224 224 224 224 224 224 224 224 224 ...
## $ TaxiIn : int 7 6 5 9 9 6 12 7 8 6 ...
## $ TaxiOut : int 13 9 17 22 9 13 15 12 22 19 ...
## $ Cancelled : int 0 0 0 0 0 0 0 0 0 0 ...
## $ CancellationCode : chr "" "" "" "" ...
## $ Diverted : int 0 0 0 0 0 0 0 0 0 0 ...