Data analyse
# load pakken der kan indlæse statafiler (pakken hedder foreign)
library(foreign)
data<- read.dta(file.path("C:/Users/Vision/Desktop/STATISTIK/BIOSTATISTIK2/repeatedANOVA7-1.dta"))
#øvrige pakker
#install.packages("ez")
library(ez)
library(reshape2)
library(ggplot2)
# her er der af en eller anden grund en ekstra datalinje uden data (na) - denne fjernes med komandoen na.omit
data <- na.omit(data)
# nu skal tiden laves om til hastighed i stedet for disse tilføjes som nye kolonner i det eksisterende datasæt
data$FNspeed<-(1000/(data$FormNormal))
data$FCspeed<-(1000/(data$FormCongruent))
data$FIspeed<-(1000/(data$FormIncong))
data$CNspeed<-(1000/(data$ColorNormal))
data$CCspeed<-(1000/(data$ColorCong))
data$CIspeed<-(1000/(data$FormIncong))
# Nu deles datasættet op i 3 datasæt:
data.orig<-data[,c(1,2,3,4,5,6,7,8)]
data.log<-data[,c(1,2,9,10,11,12,13,14)]
data.speed<-data[,c(1,2,15,16,17,18,19,20)]
# Data skal være i long format - så de skal konverteres
data.orig.long <- melt(data=data.orig, id.vars=c("subject", "field"))
data.log.long <- melt(data=data.log, id.vars=c("subject", "field"))
data.speed.long <- melt(data=data.speed, id.vars=c("subject", "field"))
# Lige lidt ændring i kolonnenavne
colnames(data.orig.long) <- c("subject", "field", "strooptype", "value")
colnames(data.log.long) <- c("subject", "field", "strooptype", "value")
colnames(data.speed.long) <- c("subject", "field", "strooptype", "speed")
#print first 10 rows of data.orig.long
head(data.orig.long, n=10)
subject field strooptype value
1 1 Field-Independent FormNormal 191
2 2 Field-Independent FormNormal 175
3 3 Field-Independent FormNormal 166
4 4 Field-Independent FormNormal 206
5 5 Field-Independent FormNormal 179
6 6 Field-Independent FormNormal 183
7 7 Field-Independent FormNormal 174
8 8 Field-Independent FormNormal 185
9 9 Field-Independent FormNormal 182
10 10 Field-Independent FormNormal 191
#print first 10 rows of data.log.long
head(data.log.long, n=10)
subject field strooptype value
1 1 Field-Independent lnFN 4.043051
2 2 Field-Independent lnFN 3.713572
3 3 Field-Independent lnFN 3.465736
4 4 Field-Independent lnFN 4.276666
5 5 Field-Independent lnFN 3.806662
6 6 Field-Independent lnFN 3.891820
7 7 Field-Independent lnFN 3.688879
8 8 Field-Independent lnFN 3.931826
9 9 Field-Independent lnFN 3.871201
10 10 Field-Independent lnFN 4.043051
#print first 10 rows of data.speed.long
head(data.speed.long, n=10)
subject field strooptype speed
1 1 Field-Independent FNspeed 5.235602
2 2 Field-Independent FNspeed 5.714286
3 3 Field-Independent FNspeed 6.024096
4 4 Field-Independent FNspeed 4.854369
5 5 Field-Independent FNspeed 5.586592
6 6 Field-Independent FNspeed 5.464481
7 7 Field-Independent FNspeed 5.747126
8 8 Field-Independent FNspeed 5.405405
9 9 Field-Independent FNspeed 5.494505
10 10 Field-Independent FNspeed 5.235602
# visualisering
ggplot(data=data.orig.long, aes(x=strooptype, y= value, fill=strooptype)) +
geom_boxplot() +
facet_grid(.~field) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
ggtitle("Oprindelige Data")

ggplot(data=data.log.long, aes(x=strooptype, y= value, fill=strooptype)) +
geom_boxplot() +
facet_grid(.~field) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
ggtitle("Log Transformerede Data")

ggplot(data=data.speed.long, aes(x=strooptype, y= speed, fill=strooptype)) +
geom_boxplot() +
facet_grid(.~field) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
ggtitle("Speed-konverterede Data")
