Read data

library(xlsx)
Loading required package: rJava
Loading required package: xlsxjars
setwd("/Users/janfredrikhovden/Dropbox/DBXPAGAANDEARBEID/Statistikk/Rworkdir/WJS")
# wjsc<-read.xlsx("WJSMAP.xlsx",1)
wjsc<-read.xlsx("WJSMAP.xlsx",2)
rownames(wjsc)<-wjsc[,1]
The following `from` values were not present in `x`: role1, role2, role3, role4, ethics1, ethics2, ethics3, influence1, influence2, influence3, influence4, influence5, influence6

rr attach(wjsc)

The following objects are masked from wjsc (pos = 3):

    COUNTRY, Covert, Detached, Editors, Elites, FriendsFamily, Medialaws,
    NOTCoercBribe, NOTTimeResources, OpportunistFac, PopulistDiss, Profit,
    Situationism, WatchdogCritChange, age, audiencepart, beat, change1,
    change2, change3, change4, change5, credfreedom, economy, education,
    eiudemoc, female, fhpfreec, fhpolfrc, freedom, fulltime, gdigroup,
    hallinmancini, highedu, joucomedu, jouedu, master, natmedia, organised,
    otherpaid, private, profitcomp, rsfc, techskills

The following objects are masked from wjsc (pos = 5):

    COUNTRY, Covert, Detached, Editors, Elites, FriendsFamily, Medialaws,
    NOTCoercBribe, NOTTimeResources, OpportunistFac, PopulistDiss, Profit,
    Situationism, WatchdogCritChange, age, audiencepart, beat, change1,
    change2, change3, change4, change5, credfreedom, economy, education,
    eiudemoc, female, fhpfreec, fhpolfrc, freedom, fulltime, gdigroup,
    hallinmancini, highedu, joucomedu, jouedu, master, natmedia, organised,
    otherpaid, private, profitcomp, rsfc, techskills

rr active<-data.frame(WatchdogCritChange, OpportunistFac,PopulistDiss, Detached,Situationism,Covert,NOTCoercBribe, Elites, Editors, FriendsFamily,Profit, Medialaws,NOTTimeResources) sup<-data.frame(COUNTRY) sup2<-data.frame(fhpfreec,hallinmancini,rsfc,fhpolfrc,eiudemoc,economy,gdigroup,audiencepart,credfreedom,profitcomp,education,techskills,beat,fulltime,organised,highedu,master,female,otherpaid,freedom,joucomedu,age,natmedia,private,jouedu) sup3<-data.frame(fhpfreec,hallinmancini,rsfc,fhpolfrc,eiudemoc,economy,gdigroup) sup4<-data.frame(audiencepart,credfreedom,profitcomp,education,techskills) sup5<-data.frame(beat,fulltime,organised,highedu,female,otherpaid,joucomedu,age,natmedia,private,jouedu) result<-soc.mca(active, sup) result\(names.sup <- sapply(strsplit(result\)names.sup, : ), tail, 1) # fjernar variabelnamn i kategorinamnet result

                        Specific Multiple Correspondence Analysis:                         
 
                    Statistics                                   Scree plot               
    Active dimensions:                            16  |  1.     56.9%   ****************************
    Dimensions explaining 80% of inertia:          4  |  2.     10.5%   *****
    Active modalities:                            52  |  3.      8.0%   ****
    Supplementary modalities:                     66  |  4.      5.8%   ***
    Individuals:                                  66  |  5.      4.2%   **
    Share of passive mass:                         0  |  6.      3.8%   **
    Number of passive modalities:                  0  |  7.      3.2%   **

                   The 13 active variables: [No. modalities - share of variance]                    

WatchdogCritChange [4 - 8%]     OpportunistFac [4 - 8%]       PopulistDiss [4 - 8%] 
          Detached [4 - 8%]       Situationism [4 - 8%]             Covert [4 - 8%] 
     NOTCoercBribe [4 - 8%]             Elites [4 - 8%]            Editors [4 - 8%] 
     FriendsFamily [4 - 8%]             Profit [4 - 8%]          Medialaws [4 - 8%] 
  NOTTimeResources [4 - 8%]

rr variance(result)


Dim        1.    2.    3.    4.    5.    6.    
Eigen      0.36  0.20  0.18  0.17  0.15  0.15
Var       12.1   6.7   6.1   5.6   5.1   5.0
Adj.Var   56.9  10.5   8.0   5.8   4.2   3.8
Cum %     56.9  67.4  75.4  81.2  85.4  89.2

rr balance(result)

      + Contrib. - Contrib. Balance (+/-)
 [1,]  0.5496944  0.4503056     1.2207142
 [2,]  0.5140434  0.4859566     1.0577971
 [3,]  0.4728414  0.5271586     0.8969622
 [4,]  0.5342867  0.4657133     1.1472439
 [5,]  0.4538580  0.5461420     0.8310258
 [6,]  0.5579293  0.4420707     1.2620814
 [7,]  0.5332087  0.4667913     1.1422852
 [8,]  0.5114898  0.4885102     1.0470400
 [9,]  0.4775272  0.5224728     0.9139752
[10,]  0.5013250  0.4986750     1.0053141
[11,]  0.5767055  0.4232945     1.3624212
[12,]  0.4271424  0.5728576     0.7456345
[13,]  0.4936933  0.5063067     0.9750875
[14,]  0.4525597  0.5474403     0.8266833
[15,]  0.5045030  0.4954970     1.0181756
[16,]  0.4771307  0.5228693     0.9125237

rr contribution(result, 1:4, mode=)

The contribution of the active variables
 
 Covert                     Dim.1  Dim.2  Dim.3  Dim.4   Freq
 Covert: high                 4.7    0.3    0.0    1.4     16
 Covert: low                  3.3    0.0    0.2    1.4     16
 Covert: mhigh                0.0    3.3    0.0    1.0     17
 Covert: mlow                 0.0    1.8    0.3    0.9     17
 Total                        8.0    5.4    0.5    4.7     66
 
 Detached                   Dim.1  Dim.2  Dim.3  Dim.4   Freq
 Detached: high               2.1    0.1    0.8    0.4     16
 Detached: low                5.8    7.5    0.1    0.1     16
 Detached: mhigh              1.5    1.4    1.3    0.3     17
 Detached: mlow               0.1    3.2    0.0    2.0     17
 Total                        9.5   12.2    2.2    2.8     66
 
 Editors                    Dim.1  Dim.2  Dim.3  Dim.4   Freq
 Editors: high                4.4    5.4    0.8    0.2     16
 Editors: low                 3.1    4.8    4.6    0.0     16
 Editors: mhigh               0.5    0.1   10.6    0.0     17
 Editors: mlow                1.0    0.0    0.1    0.6     17
 Total                        9.0   10.3   16.1    0.8     66
 
 Elites                     Dim.1  Dim.2  Dim.3  Dim.4   Freq
 Elites: high                 7.0    1.2    3.0    0.2     16
 Elites: low                  6.3    0.2    2.5    4.8     16
 Elites: mhigh                0.9    4.5    2.4    0.4     17
 Elites: mlow                 1.1    0.4    2.8   10.0     17
 Total                       15.3    6.3   10.7   15.4     66
 
 FriendsFamily              Dim.1  Dim.2  Dim.3  Dim.4   Freq
 FriendsFamily: high          0.0    0.1    0.7    7.0     16
 FriendsFamily: low           0.1    1.8    0.3    3.4     16
 FriendsFamily: mhigh         0.0    3.4    0.4    0.5     17
 FriendsFamily: mlow          0.1    0.7    0.4    0.0     17
 Total                        0.2    6.0    1.8   10.9     66
 
 Medialaws                  Dim.1  Dim.2  Dim.3  Dim.4   Freq
 Medialaws: high              0.2    9.2    0.1    3.5     16
 Medialaws: low               1.1    4.8    1.4    0.2     16
 Medialaws: mhigh             2.1    0.4    0.2    4.9     17
 Medialaws: mlow              0.7    0.1    3.7    0.7     17
 Total                        4.1   14.5    5.4    9.3     66
 
 NOTCoercBribe              Dim.1  Dim.2  Dim.3  Dim.4   Freq
 NOTCoercBribe: high          1.9    0.1    3.1    0.9     16
 NOTCoercBribe: low           2.6    2.6    0.7    4.4     16
 NOTCoercBribe: mhigh         0.3    4.5    0.2    1.9     17
 NOTCoercBribe: mlow          0.6    0.6    9.3    2.5     17
 Total                        5.4    7.8   13.3    9.7     66
 
 NOTTimeResources           Dim.1  Dim.2  Dim.3  Dim.4   Freq
 NOTTimeResources: high       2.7    0.6    0.0    5.2     16
 NOTTimeResources: low        4.7    2.2    0.4    0.0     16
 NOTTimeResources: mhigh      0.5    2.0    0.3    0.4     17
 NOTTimeResources: mlow       0.0    0.4    0.0    2.6     17
 Total                        7.9    5.2    0.7    8.2     66
 
 OpportunistFac             Dim.1  Dim.2  Dim.3  Dim.4   Freq
 OpportunistFac: high         6.3    2.3    2.4    1.4     16
 OpportunistFac: low          6.3    0.0    7.4    0.2     16
 OpportunistFac: mhigh        1.0    0.4    0.2    6.5     17
 OpportunistFac: mlow         1.0    0.8   13.5    3.2     17
 Total                       14.6    3.5   23.5   11.3     66
 
 PopulistDiss               Dim.1  Dim.2  Dim.3  Dim.4   Freq
 PopulistDiss: high           3.2    1.9    5.3    0.3     16
 PopulistDiss: low            0.6    4.0    0.3    0.9     16
 PopulistDiss: mhigh          0.8    0.0    0.7    3.9     17
 PopulistDiss: mlow           3.5    0.4    0.8    2.5     17
 Total                        8.1    6.3    7.1    7.6     66
 
 Profit                     Dim.1  Dim.2  Dim.3  Dim.4   Freq
 Profit: high                 3.5    0.1    1.4    3.0     16
 Profit: low                  3.7    0.0    1.0    0.2     16
 Profit: mhigh                1.0    1.3    2.2    0.0     17
 Profit: mlow                 0.9    0.8    0.4    5.6     17
 Total                        9.1    2.2    5.0    8.8     66
 
 Situationism               Dim.1  Dim.2  Dim.3  Dim.4   Freq
 Situationism: high           4.8    7.2    0.1    1.0     16
 Situationism: low            1.8    0.2    8.1    1.0     16
 Situationism: mhigh          0.2    3.9    0.2    0.0     17
 Situationism: mlow           0.2    0.1    4.4    0.0     17
 Total                        7.0   11.4   12.8    2.0     66
 
 WatchdogCritChange         Dim.1  Dim.2  Dim.3  Dim.4   Freq
 WatchdogCritChange: high     0.8    4.8    0.4    0.0     16
 WatchdogCritChange: low      0.3    3.9    0.1    1.9     16
 WatchdogCritChange: mhigh    0.1    0.4    0.2    5.7     17
 WatchdogCritChange: mlow     0.5    0.2    0.0    0.8     17
 Total                        1.7    9.3    0.7    8.4     66
Average contribution per modality: 1.9
Total number of individuals: 66

rr contribution(result, 1, mode=)


    Dimension 1. (+)    
                            Ctr    Coord
Elites: high                7.0     1.17
OpportunistFac: high        6.3     1.11
Detached: low               5.8     1.06
Situationism: high          4.8     0.97
Covert: high                4.7     0.96
NOTTimeResources: low       4.7     0.96
Editors: high               4.4     0.92
Profit: high                3.5     0.83
PopulistDiss: high          3.2     0.79
NOTCoercBribe: low          2.6     0.71
Medialaws: mhigh            2.1     0.62

    Dimension 1. (-)    
                            Ctr    Coord
OpportunistFac: low         6.3    -1.10
Elites: low                 6.3    -1.10
Profit: low                 3.7    -0.85
PopulistDiss: mlow          3.5    -0.80
Covert: low                 3.3    -0.80
Editors: low                3.1    -0.78
NOTTimeResources: high      2.7    -0.72
Detached: high              2.1    -0.63
NOTCoercBribe: high         1.9    -0.61

rr contribution(result, 2, mode=)


     Dimension 2. (+)     
                              Ctr    Coord
Medialaws: high               9.2     0.99
Editors: high                 5.4     0.76
WatchdogCritChange: high      4.8     0.72
NOTCoercBribe: mhigh          4.5     0.67
Elites: mhigh                 4.5     0.67
Situationism: mhigh           3.9     0.63
Covert: mhigh                 3.3     0.58
Detached: mlow                3.2     0.57
OpportunistFac: high          2.3     0.49
NOTTimeResources: mhigh       2.0     0.45

     Dimension 2. (-)     
                              Ctr    Coord
Detached: low                 7.5    -0.90
Situationism: high            7.2    -0.88
Editors: low                  4.8    -0.72
Medialaws: low                4.8    -0.72
PopulistDiss: low             4.0    -0.65
WatchdogCritChange: low       3.9    -0.65
FriendsFamily: mhigh          3.4    -0.59
NOTCoercBribe: low            2.6    -0.53
NOTTimeResources: low         2.2    -0.49

rr contribution(result, 3, mode=)


   Dimension 3. (+)   
                          Ctr    Coord
NOTCoercBribe: mlow       9.3     0.93
OpportunistFac: low       7.4     0.86
PopulistDiss: high        5.3     0.72
Editors: low              4.6     0.68
Situationism: mlow        4.4     0.64
Elites: high              3.0     0.54
Elites: low               2.5     0.50
OpportunistFac: high      2.4     0.49

   Dimension 3. (-)   
                          Ctr    Coord
OpportunistFac: mlow     13.5    -1.12
Editors: mhigh           10.6    -0.99
Situationism: low         8.1    -0.89
Medialaws: mlow           3.7    -0.59
NOTCoercBribe: high       3.1    -0.55
Elites: mlow              2.8    -0.51
Elites: mhigh             2.4    -0.47
Profit: mhigh             2.2    -0.45

rr contribution(result, 4, mode=)


     Dimension 4. (+)      
                               Ctr    Coord
Elites: mlow                  10.0     0.92
OpportunistFac: mhigh          6.5     0.74
WatchdogCritChange: mhigh      5.7     0.69
Profit: mlow                   5.6     0.69
Medialaws: mhigh               4.9     0.64
FriendsFamily: low             3.4     0.56
NOTTimeResources: mlow         2.6     0.47
PopulistDiss: mlow             2.5     0.46
NOTCoercBribe: mlow            2.5     0.46
Detached: mlow                 2.0     0.42

     Dimension 4. (-)      
                               Ctr    Coord
FriendsFamily: high            7.0    -0.79
NOTTimeResources: high         5.2    -0.68
Elites: low                    4.8    -0.66
NOTCoercBribe: low             4.4    -0.63
PopulistDiss: mhigh            3.9    -0.57
Medialaws: high                3.5    -0.56
OpportunistFac: mlow           3.2    -0.52
Profit: high                   3.0    -0.52

rr map.active(result, dim=c(2,1)) map.ctr(result, dim=c(2,1)) r map.ind(result,point.size = result\(ctr.ind[, 1], dim=c(2,1)) map.ind(result,point.size = result\)ctr.ind[, 2], dim=c(2,1)) r map.sup(result, dim=c(2,1)) result<-soc.mca(active, sup3) map.sup(result, dim=c(2,1), map.title=points: various (H+I)) r result<-soc.mca(active, sup4) map.sup(result, dim=c(2,1), map.title=points: perceived change(G)) result<-soc.mca(active, sup5) map.sup(result, dim=c(2,1), map.title=points: organization/demogr.(E+F))

LS0tCnRpdGxlOiAiV0pTIENvdW50cnkgbWFwcGluZyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCiMgUmVhZCBkYXRhCmBgYHtyLCB3YXJuaW5nPUZBTFNFfQpsaWJyYXJ5KHhsc3gpCnNldHdkKCIvVXNlcnMvamFuZnJlZHJpa2hvdmRlbi9Ecm9wYm94L0RCWFBBR0FBTkRFQVJCRUlEL1N0YXRpc3Rpa2svUndvcmtkaXIvV0pTIikKIyB3anNjPC1yZWFkLnhsc3goIldKU01BUC54bHN4IiwxKQp3anNjPC1yZWFkLnhsc3goIldKU01BUC54bHN4IiwyKQpyb3duYW1lcyh3anNjKTwtd2pzY1ssMV0KYGBgCgpgYGB7cn0KbGlicmFyeShzb2MuY2EpCndqc2M8LXBseXI6OnJlbmFtZSh3anNjLCBjKHJvbGUxPSJXYXRjaGRvZ0NyaXRDaGFuZ2UiLCByb2xlMj0iT3Bwb3J0dW5pc3RGYWMiLCByb2xlMz0iUG9wdWxpc3REaXNzIiwgcm9sZTQ9IkRldGFjaGVkIiwgZXRoaWNzMT0iU2l0dWF0aW9uaXNtIiwgZXRoaWNzMj0iQ292ZXJ0IiwgZXRoaWNzMz0iTk9UQ29lcmNCcmliZSIsIGluZmx1ZW5jZTE9IkVsaXRlcyIsIGluZmx1ZW5jZTI9IkVkaXRvcnMiLCBpbmZsdWVuY2UzPSJGcmllbmRzRmFtaWx5IiwgaW5mbHVlbmNlND0iUHJvZml0IiwgaW5mbHVlbmNlNT0iTWVkaWFsYXdzIiwgaW5mbHVlbmNlNj0iTk9UVGltZVJlc291cmNlcyIpKQphdHRhY2god2pzYykKYWN0aXZlPC1kYXRhLmZyYW1lKFdhdGNoZG9nQ3JpdENoYW5nZSwgT3Bwb3J0dW5pc3RGYWMsUG9wdWxpc3REaXNzLCBEZXRhY2hlZCxTaXR1YXRpb25pc20sQ292ZXJ0LE5PVENvZXJjQnJpYmUsIEVsaXRlcywgRWRpdG9ycywgRnJpZW5kc0ZhbWlseSxQcm9maXQsIE1lZGlhbGF3cyxOT1RUaW1lUmVzb3VyY2VzKQpzdXA8LWRhdGEuZnJhbWUoQ09VTlRSWSkKc3VwMjwtZGF0YS5mcmFtZShmaHBmcmVlYyxoYWxsaW5tYW5jaW5pLHJzZmMsZmhwb2xmcmMsZWl1ZGVtb2MsZWNvbm9teSxnZGlncm91cCxhdWRpZW5jZXBhcnQsY3JlZGZyZWVkb20scHJvZml0Y29tcCxlZHVjYXRpb24sdGVjaHNraWxscyxiZWF0LGZ1bGx0aW1lLG9yZ2FuaXNlZCxoaWdoZWR1LG1hc3RlcixmZW1hbGUsb3RoZXJwYWlkLGZyZWVkb20sam91Y29tZWR1LGFnZSxuYXRtZWRpYSxwcml2YXRlLGpvdWVkdSkKc3VwMzwtZGF0YS5mcmFtZShmaHBmcmVlYyxoYWxsaW5tYW5jaW5pLHJzZmMsZmhwb2xmcmMsZWl1ZGVtb2MsZWNvbm9teSxnZGlncm91cCkKc3VwNDwtZGF0YS5mcmFtZShhdWRpZW5jZXBhcnQsY3JlZGZyZWVkb20scHJvZml0Y29tcCxlZHVjYXRpb24sdGVjaHNraWxscykKc3VwNTwtZGF0YS5mcmFtZShiZWF0LGZ1bGx0aW1lLG9yZ2FuaXNlZCxoaWdoZWR1LGZlbWFsZSxvdGhlcnBhaWQsam91Y29tZWR1LGFnZSxuYXRtZWRpYSxwcml2YXRlLGpvdWVkdSkKcmVzdWx0PC1zb2MubWNhKGFjdGl2ZSwgc3VwKQpyZXN1bHQkbmFtZXMuc3VwIDwtICBzYXBwbHkoc3Ryc3BsaXQocmVzdWx0JG5hbWVzLnN1cCwgIjogIiksIHRhaWwsIDEpICMgZmplcm5hciB2YXJpYWJlbG5hbW4gaSBrYXRlZ29yaW5hbW5ldApyZXN1bHQKdmFyaWFuY2UocmVzdWx0KQpiYWxhbmNlKHJlc3VsdCkKY29udHJpYnV0aW9uKHJlc3VsdCwgMTo0LCBtb2RlPSJ2YXJpYWJsZSIpCmNvbnRyaWJ1dGlvbihyZXN1bHQsIDEsIG1vZGU9InNvcnQiKQpjb250cmlidXRpb24ocmVzdWx0LCAyLCBtb2RlPSJzb3J0IikKY29udHJpYnV0aW9uKHJlc3VsdCwgMywgbW9kZT0ic29ydCIpCmNvbnRyaWJ1dGlvbihyZXN1bHQsIDQsIG1vZGU9InNvcnQiKQptYXAuYWN0aXZlKHJlc3VsdCwgZGltPWMoMiwxKSkKbWFwLmN0cihyZXN1bHQsIGRpbT1jKDIsMSkpCm1hcC5pbmQocmVzdWx0LHBvaW50LnNpemUgPSByZXN1bHQkY3RyLmluZFssIDFdLCBkaW09YygyLDEpKSAKbWFwLmluZChyZXN1bHQscG9pbnQuc2l6ZSA9IHJlc3VsdCRjdHIuaW5kWywgMl0sIGRpbT1jKDIsMSkpIAptYXAuc3VwKHJlc3VsdCwgZGltPWMoMiwxKSkKcmVzdWx0PC1zb2MubWNhKGFjdGl2ZSwgc3VwMykKbWFwLnN1cChyZXN1bHQsIGRpbT1jKDIsMSksIG1hcC50aXRsZT0iU3VwcGxlbWVudGFyeSBwb2ludHM6IHZhcmlvdXMgKEgrSSkiKQpyZXN1bHQ8LXNvYy5tY2EoYWN0aXZlLCBzdXA0KQptYXAuc3VwKHJlc3VsdCwgZGltPWMoMiwxKSwgbWFwLnRpdGxlPSJTdXBwbGVtZW50YXJ5IHBvaW50czogcGVyY2VpdmVkIGNoYW5nZShHKSIpCnJlc3VsdDwtc29jLm1jYShhY3RpdmUsIHN1cDUpCm1hcC5zdXAocmVzdWx0LCBkaW09YygyLDEpLCBtYXAudGl0bGU9IlN1cHBsZW1lbnRhcnkgcG9pbnRzOiBvcmdhbml6YXRpb24vZGVtb2dyLihFK0YpIikKYGBgCgo=