Importing Bomber_wide data
library(dplyr)
library(tidyr)
library(tidyverse)
library(prettydoc)
BomberWide<-readRDS("R/data/bomber_wide.rds")%>%
as_tibble() %>%
gather(Year, FH, `1996`:`2014`)
BomberWide
## # A tibble: 57 × 4
## Type MD Year FH
## <chr> <chr> <chr> <int>
## 1 Bomber B-1 1996 26914
## 2 Bomber B-2 1996 2364
## 3 Bomber B-52 1996 28511
## 4 Bomber B-1 1997 25219
## 5 Bomber B-2 1997 2776
## 6 Bomber B-52 1997 26034
## 7 Bomber B-1 1998 24205
## 8 Bomber B-2 1998 2166
## 9 Bomber B-52 1998 25639
## 10 Bomber B-1 1999 23306
## # ... with 47 more rows
Importing Bomber_long data
BomberLong<-readRDS("R/data/bomber_long.rds")%>%
as_tibble() %>%
spread(key = "Output", value = "Value")
BomberLong
## # A tibble: 57 × 6
## Type MD FY Cost FH Gallons
## * <chr> <chr> <int> <int> <int> <int>
## 1 Bomber B-1 1996 72753781 26914 88594449
## 2 Bomber B-1 1997 71297263 25219 85484074
## 3 Bomber B-1 1998 84026805 24205 85259038
## 4 Bomber B-1 1999 71848336 23306 79323816
## 5 Bomber B-1 2000 58439777 25013 86230284
## 6 Bomber B-1 2001 94946077 25059 86892432
## 7 Bomber B-1 2002 96458536 26581 89198262
## 8 Bomber B-1 2003 68650070 21491 74485788
## 9 Bomber B-1 2004 101895634 28118 101397707
## 10 Bomber B-1 2005 124816690 21859 78410415
## # ... with 47 more rows
Importing Bomber_combined data
BomberCombined<-readRDS("R/data/bomber_combined.rds")%>% as_tibble() %>%
separate(AC, into = c("Type", "MD"), sep = " ")
BomberCombined
## # A tibble: 57 × 6
## Type MD FY Cost FH Gallons
## * <chr> <chr> <int> <int> <int> <int>
## 1 Bomber B-1 1996 72753781 26914 88594449
## 2 Bomber B-1 1997 71297263 25219 85484074
## 3 Bomber B-1 1998 84026805 24205 85259038
## 4 Bomber B-1 1999 71848336 23306 79323816
## 5 Bomber B-1 2000 58439777 25013 86230284
## 6 Bomber B-1 2001 94946077 25059 86892432
## 7 Bomber B-1 2002 96458536 26581 89198262
## 8 Bomber B-1 2003 68650070 21491 74485788
## 9 Bomber B-1 2004 101895634 28118 101397707
## 10 Bomber B-1 2005 124816690 21859 78410415
## # ... with 47 more rows
Importing bomber_prefix data
BomberPrefix<-readRDS("R/data/bomber_prefix.rds") %>% as_tibble() %>%
unite('MD', prefix, number, sep = '-')
BomberPrefix
## # A tibble: 171 × 5
## Type MD FY Output Value
## * <chr> <chr> <int> <chr> <int>
## 1 Bomber B-1 1996 FH 26914
## 2 Bomber B-1 1997 FH 25219
## 3 Bomber B-1 1998 FH 24205
## 4 Bomber B-1 1999 FH 23306
## 5 Bomber B-1 2000 FH 25013
## 6 Bomber B-1 2001 FH 25059
## 7 Bomber B-1 2002 FH 26581
## 8 Bomber B-1 2003 FH 21491
## 9 Bomber B-1 2004 FH 28118
## 10 Bomber B-1 2005 FH 21859
## # ... with 161 more rows
Importing bomber_mess data
Bomber_mess<-readRDS("R/data/bomber_mess.rds")
UpdatedBomberMess<-as_tibble(Bomber_mess)
New<-UpdatedBomberMess %>% unite(MD,prefix,number,sep="-") %>% separate(Metric,into =c("FY","Output"),sep="_") %>% spread(key=Output,value=Value)
New %>% gather(`Cost`,`FH`,`Gallons`,key="Output",value="Value")%>% ggplot(aes(x=FY,y=Value,group=MD))+geom_line()+facet_wrap(~Output,scales="free",nrow=3)
Importing WSProgrammatics and wecategorization data
WSProgrammatics <- readRDS("R/data/ws_programmatics.rds")
WSCategorization <- readRDS("R/data/ws_categorizations.rds")
Prob7<-WSProgrammatics %>% left_join(WSCategorization,by=c("Base","MD"))%>%filter(FY==2014)%>%
group_by(Base)%>%
mutate(CPFH=Total_O.S/FH) %>%
aggregate(CPFH ~Base,data=.,mean)%>%
arrange(desc(CPFH))%>%top_n(10)
Bar graph and other manipulations on the combined dataset.
WSProgrammatics %>%
full_join(WSCategorization, by = c("Base","MD")) %>%
filter(FY=="2014")%>%
select(Base, Total_O.S, FH, FY, MD) %>%
na.omit() %>%
group_by(Base) %>%
summarize(Total_O.S = sum(Total_O.S, na.rm = T), FH = sum(FH)) %>%
mutate(CPFH = Total_O.S/FH) %>%
top_n(10, CPFH) %>%
ggplot(mapping = aes(x=Base,y=CPFH))+
geom_bar(stat = "identity",fill="pink")
Visualizations on the data
library(ggplot2)
WSProgrammatics%>%left_join(WSCategorization,by=c("Base","MD"))%>%
ggplot(aes(End_Strength,Total_O.S))+geom_point(color="magenta")+facet_wrap(~FY,scales="free",nrow=3)
WSProgrammatics%>%left_join(WSCategorization,by=c("Base","MD"))%>%
ggplot(aes(End_Strength,Total_O.S))+geom_point(color="Blue")+facet_wrap(~System,scales="free",nrow=3)