This document is written with R 3.3.1 using RMarkdown. For more information,please visit my homepage.
It was orginally created on 2016/11/03, and updated on 2016-11-11 13:59:36
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## 'data.frame': 108 obs. of 8 variables:
## $ Date : Date, format: "2007-07-01" "2007-08-01" ...
## $ Unemployment : num 4.7 4.6 4.7 4.7 4.7 5 5 4.9 5.1 5 ...
## $ Nonfarm : num 138052 138028 138116 138201 138316 ...
## $ Duration : num 17.2 17 16.3 17 17.3 16.6 17.5 16.9 16.5 16.9 ...
## $ CPI : num 208 208 209 209 211 ...
## $ Newhomeprice : num 307100 301300 292200 310100 316800 ...
## $ Housepermit : num 1354 1330 1183 1264 1197 ...
## $ Hourlyearning: num 21 21 21 21.1 21.1 ...
## Date Unemployment Nonfarm Duration
## Min. :2007-07-01 Min. : 4.60 Min. :129733 Min. :16.30
## 1st Qu.:2009-09-23 1st Qu.: 5.50 1st Qu.:132002 1st Qu.:26.52
## Median :2011-12-16 Median : 7.40 Median :136013 Median :32.60
## Mean :2011-12-16 Mean : 7.26 Mean :135904 Mean :30.66
## 3rd Qu.:2014-03-08 3rd Qu.: 9.00 3rd Qu.:138418 3rd Qu.:36.98
## Max. :2016-06-01 Max. :10.00 Max. :144172 Max. :40.70
## CPI Newhomeprice Housepermit Hourlyearning
## Min. :207.6 Min. :245200 Min. : 478.0 Min. :20.96
## 1st Qu.:217.3 1st Qu.:271625 1st Qu.: 607.0 1st Qu.:22.30
## Median :227.5 Median :294950 Median : 874.0 Median :23.24
## Mean :225.9 Mean :302750 Mean : 851.6 Mean :23.29
## 3rd Qu.:235.5 3rd Qu.:332300 3rd Qu.:1050.2 3rd Qu.:24.33
## Max. :239.9 Max. :384000 Max. :1354.0 Max. :25.62
Quick Summary of the Dataset:
There are total 108 number of observations for each variable, with time period from 2007-07-01 to 2016-06-01.
library(xts)
library(ggplot2)
library(ggfortify)
data<- xts(data[,-1],as.Date(data$Date,format="%m/$d/%Y"))
autoplot(data[,c(1,7)],ts.colour = "blue",main="US Monthly Unemployment Rate and Hourly Earning ")
## Visualize the Unemp and Hourly Rate
library(ggvis)
##
## Attaching package: 'ggvis'
## The following object is masked from 'package:ggplot2':
##
## resolution
data<-as.data.frame(data)
g<-ggvis(data,x=~Hourlyearning,y=~Unemployment,fill=~Duration) %>% layer_points() %>%layer_smooths()
g
library(forecast)
## Loading required package: timeDate
## This is forecast 7.3
##
## Attaching package: 'forecast'
## The following object is masked from 'package:ggfortify':
##
## gglagplot
data<-as.xts(data)
fit1<-auto.arima(data[,1])
summary(fit1)
## Series: data[, 1]
## ARIMA(1,2,1)
##
## Coefficients:
## ar1 ma1
## -0.1214 -0.7423
## s.e. 0.1212 0.0804
##
## sigma^2 estimated as 0.02983: log likelihood=36.27
## AIC=-66.53 AICc=-66.3 BIC=-58.54
##
## Training set error measures:
## ME RMSE MAE MPE MAPE
## Training set 0.0001647617 0.1694724 0.1331492 0.1015715 1.917134
## MASE ACF1
## Training set 0.01833965 -0.0007451305
data<-as.ts(data)
fit2<-lm(data[,1]~data[,-1],data=data)
summary(fit2)
##
## Call:
## lm(formula = data[, 1] ~ data[, -1], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.39850 -0.11465 -0.00175 0.11588 0.34735
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.146e+01 1.427e+00 43.058 < 2e-16 ***
## data[, -1]Nonfarm -5.135e-04 1.715e-05 -29.940 < 2e-16 ***
## data[, -1]Duration -3.808e-02 6.698e-03 -5.685 1.27e-07 ***
## data[, -1]CPI 4.941e-03 9.356e-03 0.528 0.5986
## data[, -1]Newhomeprice -2.135e-06 1.191e-06 -1.793 0.0760 .
## data[, -1]Housepermit -4.307e-04 1.926e-04 -2.236 0.0275 *
## data[, -1]Hourlyearning 7.154e-01 5.558e-02 12.870 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1645 on 101 degrees of freedom
## Multiple R-squared: 0.9918, Adjusted R-squared: 0.9913
## F-statistic: 2032 on 6 and 101 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(fit2,las=0.8)