Using Deducer without GUI

Some of the functions that Deducer (http://www.deducer.org) GUI provides are also useful for CUI use. I asked the author, Dr. Ian Fellows about this, and he kindly provided how to load Deducer in the CUI environment.

Preconfigure to enable loading of Deducer without GUI

Sys.setenv(NOAWT = 1)
## options(DeducerNoGUI = TRUE)         # This is not necessary. If used, Deducer on JGR is inactivated.

Load Deducer

## It's certainly not a usual way of using Deducer.
library(Deducer)
Note: On Mac OS X we strongly recommend using iplots from within JGR.
Proceed at your own risk as iplots cannot resolve potential ev.loop deadlocks.
'Yes' is assumed for all dialogs as they cannot be shown without a deadlock,
also ievent.wait() is disabled.

Frequencies

## Load Arthritis dataset from vcd package
library(vcd)
data(Arthritis)

## frequencies function in Deducer
frequencies(Arthritis[,-1])
$Treatment
------------------------------------------------------------
--                        Frequencies                     --
--                                                        --
    Value # of Cases       % Cumulative %
1 Placebo         43    51.2         51.2
2 Treated         41    48.8        100.0
--                                                        --
--                        Case Summary                    --
--                                                        --
           Valid Missing Total
# of cases    84       0    84
--                                                        --
--                                                        --
------------------------------------------------------------






$Sex
------------------------------------------------------------
--                        Frequencies                     --
--                                                        --
   Value # of Cases       % Cumulative %
1 Female         59    70.2         70.2
2   Male         25    29.8        100.0
--                                                        --
--                        Case Summary                    --
--                                                        --
           Valid Missing Total
# of cases    84       0    84
--                                                        --
--                                                        --
------------------------------------------------------------






$Age
------------------------------------------------------------
--                        Frequencies                     --
--                                                        --
   Value # of Cases       % Cumulative %
1     23          2     2.4          2.4
2     27          1     1.2          3.6
3     29          1     1.2          4.8
4     30          3     3.6          8.3
5     31          1     1.2          9.5
6     32          3     3.6         13.1
7     33          1     1.2         14.3
8     37          3     3.6         17.9
9     41          2     2.4         20.2
10    44          2     2.4         22.6
11    45          1     1.2         23.8
12    46          2     2.4         26.2
13    48          3     3.6         29.8
14    49          1     1.2         31.0
15    50          1     1.2         32.1
16    51          2     2.4         34.5
17    52          1     1.2         35.7
18    53          2     2.4         38.1
19    54          3     3.6         41.7
20    55          3     3.6         45.2
21    56          1     1.2         46.4
22    57          5     6.0         52.4
23    58          3     3.6         56.0
24    59          8     9.5         65.5
25    60          1     1.2         66.7
26    61          2     2.4         69.0
27    62          4     4.8         73.8
28    63          4     4.8         78.6
29    64          3     3.6         82.1
30    65          1     1.2         83.3
31    66          4     4.8         88.1
32    67          1     1.2         89.3
33    68          3     3.6         92.9
34    69          3     3.6         96.4
35    70          2     2.4         98.8
36    74          1     1.2        100.0
--                                                        --
--                        Case Summary                    --
--                                                        --
           Valid Missing Total
# of cases    84       0    84
--                                                        --
--                                                        --
------------------------------------------------------------






$Improved
------------------------------------------------------------
--                        Frequencies                     --
--                                                        --
   Value # of Cases       % Cumulative %
1   None         42    50.0         50.0
2   Some         14    16.7         66.7
3 Marked         28    33.3        100.0
--                                                        --
--                        Case Summary                    --
--                                                        --
           Valid Missing Total
# of cases    84       0    84
--                                                        --
--                                                        --
------------------------------------------------------------

Load bone density data

Rosner's bone density data are used. ' http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20bI&product_isbn_issn=9780538733496

## Bone density
bone <- read.csv("~/statistics/bio206Rosner7th/ASCII-comma/BONEDEN.DAT.txt", quote = "'")

Descriptive statistics for continuous variables by the same grouping variable

desc.res <- descriptive.table(vars = d(age, ht1, wt1, ht2, wt2) ,
                              strata = d(zyg),
                              data= bone)
desc.res
$`zyg: 1 `
      Mean St. Deviation Median 25th Percentile 75th Percentile Minimum Maximum    Skew Kurtosis Valid N
age  51.38        10.740     49              44              55      36      73  0.8487   0.1566      21
ht1 160.76         5.656    162             157             165     149     169 -0.6389  -0.3984      21
wt1  66.95        13.629     66              61              70      48     112  1.6906   5.3044      21
ht2 162.38         4.353    163             160             165     153     169 -0.7922   0.1180      21
wt2  65.19        12.995     62              55              73      43      94  0.5322  -0.2492      21

$`zyg: 2 `
      Mean St. Deviation Median 25th Percentile 75th Percentile Minimum Maximum    Skew Kurtosis Valid N
age  46.20        12.480   44.0           39.25           48.25      27      76  1.0072   0.8581      20
ht1 162.10         4.789  162.5          160.50          164.25     150     171 -0.7649   1.6018      20
wt1  63.75        16.293   58.5           56.50           65.75      47     114  2.0587   4.4823      20
ht2 160.75         4.962  161.5          157.75          164.00     150     170 -0.2192  -0.1060      20
wt2  58.30         9.701   56.0           53.00           60.00      43      88  1.6712   3.9242      20

Comparison (t-test, Wilcoxon test) of multiple variables by the same grouping variable

## Two-sample t-test
two.sample.test(formula = d(age, ht1, wt1, ht2, wt2) ~ zyg, data = bone, test = t.test, var.equal = TRUE)
                                                  Two Sample t-test                                                  
    mean of 1 mean of 2 Difference 95% CI Lower 95% CI Upper       t df p-value
age     51.38     46.20      5.181      -2.1627       12.525  1.4270 39 0.16153
ht1    160.76    162.10     -1.338      -4.6570        1.981 -0.8155 39 0.41974
wt1     66.95     63.75      3.202      -6.2684       12.673  0.6839 39 0.49806
ht2    162.38    160.75      1.631      -1.3137        4.576  1.1203 39 0.26943
wt2     65.19     58.30      6.890      -0.3826       14.164  1.9163 39 0.06268
  HA: two.sided 
  H0:  difference in means = 0 

## Welch Two-sample t-test (not assuming equal variance)
two.sample.test(formula = d(age, ht1, wt1, ht2, wt2) ~ zyg, data = bone, test = t.test, var.equal = FALSE)
                                              Welch Two Sample t-test                                                
    mean of 1 mean of 2 Difference 95% CI Lower 95% CI Upper       t    df p-value
age     51.38     46.20      5.181       -2.199       12.561  1.4217 37.52 0.16337
ht1    160.76    162.10     -1.338       -4.645        1.969 -0.8189 38.49 0.41790
wt1     66.95     63.75      3.202       -6.326       12.731  0.6809 37.11 0.50015
ht2    162.38    160.75      1.631       -1.326        4.588  1.1167 37.78 0.27119
wt2     65.19     58.30      6.890       -0.344       14.125  1.9300 36.94 0.06132
  HA: two.sided 
  H0:  difference in means = 0 

## Wilcoxon test
two.sample.test(formula = d(age, ht1, wt1, ht2, wt2) ~ zyg, data = bone, test = wilcox.test, correct = FALSE)
                                               Wilcoxon rank sum test                                                
      W p-value
age 280 0.06747
ht1 188 0.56483
wt1 272 0.10545
ht2 255 0.23900
wt2 283 0.05652
  HA: two.sided 
  H0:  location shift = 0 

## Classical ANOVA (here it is just two groups)
k.sample.test(formula = d(age, ht1, wt1, ht2, wt2) ~ zyg, data = bone, test = oneway.test, var.equal = TRUE)
                                             One-way analysis of means                                               
         F (num df,denom df) p-value
age 2.0364            (1,39) 0.16153
ht1 0.6650            (1,39) 0.41974
wt1 0.4678            (1,39) 0.49806
ht2 1.2551            (1,39) 0.26943
wt2 3.6722            (1,39) 0.06268

## ANOVA without assuming equal variance
k.sample.test(formula = d(age, ht1, wt1, ht2, wt2) ~ zyg, data = bone, test = oneway.test, var.equal = FALSE)
                              One-way analysis of means (not assuming equal variances)                               
         F (num df,denom df) p-value
age 2.0212        (1,37.522) 0.16337
ht1 0.6705        (1,38.487) 0.41790
wt1 0.4637        (1,37.106) 0.50015
ht2 1.2470        (1,37.779) 0.27119
wt2 3.7247        (1,36.941) 0.06132

Multiple contingency tables with the same column variable

table.result <- contingency.tables(row.vars = d(Sex,Improved),
                                   col.vars = d(Treatment),
                                   data     = Arthritis)
## Add Fisher exact test
table.result <- add.fishers.exact(table.result)

## Full result
table.result
====================================================================================================================

               ======================================================================================               
                                   ========== Table: Sex by Treatment ==========                                   
                       | Treatment 
                   Sex |  Placebo  |  Treated  | Row Total | 
-----------------------|-----------|-----------|-----------|
      Female  Count    |       32  |       27  |       59  | 
              Row %    |   54.237% |   45.763% |   70.238% | 
              Column % |   74.419% |   65.854% |           | 
              Total %  |   38.095% |   32.143% |           | 
-----------------------|-----------|-----------|-----------|
        Male  Count    |       11  |       14  |       25  | 
              Row %    |   44.000% |   56.000% |   29.762% | 
              Column % |   25.581% |   34.146% |           | 
              Total %  |   13.095% |   16.667% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       43  |       41  |       84  | 
              Column % |   51.190% |   48.810% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.476  

               ======================================================================================               
                                 ========== Table: Improved by Treatment ==========                                 
                       | Treatment 
              Improved |  Placebo  |  Treated  | Row Total | 
-----------------------|-----------|-----------|-----------|
        None  Count    |       29  |       13  |       42  | 
              Row %    |   69.048% |   30.952% |   50.000% | 
              Column % |   67.442% |   31.707% |           | 
              Total %  |   34.524% |   15.476% |           | 
-----------------------|-----------|-----------|-----------|
        Some  Count    |        7  |        7  |       14  | 
              Row %    |   50.000% |   50.000% |   16.667% | 
              Column % |   16.279% |   17.073% |           | 
              Total %  |    8.333% |    8.333% |           | 
-----------------------|-----------|-----------|-----------|
      Marked  Count    |        7  |       21  |       28  | 
              Row %    |   25.000% |   75.000% |   33.333% | 
              Column % |   16.279% |   51.220% |           | 
              Total %  |    8.333% |   25.000% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       43  |       41  |       84  | 
              Column % |   51.190% |   48.810% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.001  





====================================================================================================================
## Simplified result
print(table.result, prop.r = F, prop.t = F)
====================================================================================================================

               ======================================================================================               
                                   ========== Table: Sex by Treatment ==========                                   
                       | Treatment 
                   Sex |  Placebo  |  Treated  | Row Total | 
-----------------------|-----------|-----------|-----------|
      Female  Count    |       32  |       27  |       59  | 
              Column % |   74.419% |   65.854% |           | 
-----------------------|-----------|-----------|-----------|
        Male  Count    |       11  |       14  |       25  | 
              Column % |   25.581% |   34.146% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       43  |       41  |       84  | 
              Column % |   51.190% |   48.810% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.476  

               ======================================================================================               
                                 ========== Table: Improved by Treatment ==========                                 
                       | Treatment 
              Improved |  Placebo  |  Treated  | Row Total | 
-----------------------|-----------|-----------|-----------|
        None  Count    |       29  |       13  |       42  | 
              Column % |   67.442% |   31.707% |           | 
-----------------------|-----------|-----------|-----------|
        Some  Count    |        7  |        7  |       14  | 
              Column % |   16.279% |   17.073% |           | 
-----------------------|-----------|-----------|-----------|
      Marked  Count    |        7  |       21  |       28  | 
              Column % |   16.279% |   51.220% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       43  |       41  |       84  | 
              Column % |   51.190% |   48.810% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.001  





====================================================================================================================

Every possible combination (including meaningless self by self combinations)

all.by.all.table <-
    contingency.tables(row.vars = d(Sex,Improved,Treatment),
                       col.vars = d(Sex,Improved,Treatment),
                       data     = Arthritis)

## Add Fisher exact test
all.by.all.table <- add.fishers.exact(all.by.all.table)

## Full table
all.by.all.table
====================================================================================================================

               ======================================================================================               
                                      ========== Table: Sex by Sex ==========                                      
                       | Sex 
                   Sex |   Female  |     Male  | Row Total | 
-----------------------|-----------|-----------|-----------|
      Female  Count    |       59  |        0  |       59  | 
              Row %    |  100.000% |    0.000% |   70.238% | 
              Column % |  100.000% |    0.000% |           | 
              Total %  |   70.238% |    0.000% |           | 
-----------------------|-----------|-----------|-----------|
        Male  Count    |        0  |       25  |       25  | 
              Row %    |    0.000% |  100.000% |   29.762% | 
              Column % |    0.000% |  100.000% |           | 
              Total %  |    0.000% |   29.762% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       59  |       25  |       84  | 
              Column % |   70.238% |   29.762% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              <0.001 

               ======================================================================================               
                                    ========== Table: Sex by Improved ==========                                    
                       | Improved 
                   Sex |     None  |     Some  |   Marked  | Row Total | 
-----------------------|-----------|-----------|-----------|-----------|
      Female  Count    |       25  |       12  |       22  |       59  | 
              Row %    |   42.373% |   20.339% |   37.288% |   70.238% | 
              Column % |   59.524% |   85.714% |   78.571% |           | 
              Total %  |   29.762% |   14.286% |   26.190% |           | 
-----------------------|-----------|-----------|-----------|-----------|
        Male  Count    |       17  |        2  |        6  |       25  | 
              Row %    |   68.000% |    8.000% |   24.000% |   29.762% | 
              Column % |   40.476% |   14.286% |   21.429% |           | 
              Total %  |   20.238% |    2.381% |    7.143% |           | 
-----------------------|-----------|-----------|-----------|-----------|
          Column Total |       42  |       14  |       28  |       84  | 
              Column % |   50.000% |   16.667% |   33.333% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.109  

               ======================================================================================               
                                   ========== Table: Sex by Treatment ==========                                   
                       | Treatment 
                   Sex |  Placebo  |  Treated  | Row Total | 
-----------------------|-----------|-----------|-----------|
      Female  Count    |       32  |       27  |       59  | 
              Row %    |   54.237% |   45.763% |   70.238% | 
              Column % |   74.419% |   65.854% |           | 
              Total %  |   38.095% |   32.143% |           | 
-----------------------|-----------|-----------|-----------|
        Male  Count    |       11  |       14  |       25  | 
              Row %    |   44.000% |   56.000% |   29.762% | 
              Column % |   25.581% |   34.146% |           | 
              Total %  |   13.095% |   16.667% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       43  |       41  |       84  | 
              Column % |   51.190% |   48.810% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.476  

               ======================================================================================               
                                    ========== Table: Improved by Sex ==========                                    
                       | Sex 
              Improved |   Female  |     Male  | Row Total | 
-----------------------|-----------|-----------|-----------|
        None  Count    |       25  |       17  |       42  | 
              Row %    |   59.524% |   40.476% |   50.000% | 
              Column % |   42.373% |   68.000% |           | 
              Total %  |   29.762% |   20.238% |           | 
-----------------------|-----------|-----------|-----------|
        Some  Count    |       12  |        2  |       14  | 
              Row %    |   85.714% |   14.286% |   16.667% | 
              Column % |   20.339% |    8.000% |           | 
              Total %  |   14.286% |    2.381% |           | 
-----------------------|-----------|-----------|-----------|
      Marked  Count    |       22  |        6  |       28  | 
              Row %    |   78.571% |   21.429% |   33.333% | 
              Column % |   37.288% |   24.000% |           | 
              Total %  |   26.190% |    7.143% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       59  |       25  |       84  | 
              Column % |   70.238% |   29.762% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.109  

               ======================================================================================               
                                 ========== Table: Improved by Improved ==========                                 
                       | Improved 
              Improved |     None  |     Some  |   Marked  | Row Total | 
-----------------------|-----------|-----------|-----------|-----------|
        None  Count    |       42  |        0  |        0  |       42  | 
              Row %    |  100.000% |    0.000% |    0.000% |   50.000% | 
              Column % |  100.000% |    0.000% |    0.000% |           | 
              Total %  |   50.000% |    0.000% |    0.000% |           | 
-----------------------|-----------|-----------|-----------|-----------|
        Some  Count    |        0  |       14  |        0  |       14  | 
              Row %    |    0.000% |  100.000% |    0.000% |   16.667% | 
              Column % |    0.000% |  100.000% |    0.000% |           | 
              Total %  |    0.000% |   16.667% |    0.000% |           | 
-----------------------|-----------|-----------|-----------|-----------|
      Marked  Count    |        0  |        0  |       28  |       28  | 
              Row %    |    0.000% |    0.000% |  100.000% |   33.333% | 
              Column % |    0.000% |    0.000% |  100.000% |           | 
              Total %  |    0.000% |    0.000% |   33.333% |           | 
-----------------------|-----------|-----------|-----------|-----------|
          Column Total |       42  |       14  |       28  |       84  | 
              Column % |   50.000% |   16.667% |   33.333% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              <0.001 

               ======================================================================================               
                                 ========== Table: Improved by Treatment ==========                                 
                       | Treatment 
              Improved |  Placebo  |  Treated  | Row Total | 
-----------------------|-----------|-----------|-----------|
        None  Count    |       29  |       13  |       42  | 
              Row %    |   69.048% |   30.952% |   50.000% | 
              Column % |   67.442% |   31.707% |           | 
              Total %  |   34.524% |   15.476% |           | 
-----------------------|-----------|-----------|-----------|
        Some  Count    |        7  |        7  |       14  | 
              Row %    |   50.000% |   50.000% |   16.667% | 
              Column % |   16.279% |   17.073% |           | 
              Total %  |    8.333% |    8.333% |           | 
-----------------------|-----------|-----------|-----------|
      Marked  Count    |        7  |       21  |       28  | 
              Row %    |   25.000% |   75.000% |   33.333% | 
              Column % |   16.279% |   51.220% |           | 
              Total %  |    8.333% |   25.000% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       43  |       41  |       84  | 
              Column % |   51.190% |   48.810% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.001  

               ======================================================================================               
                                   ========== Table: Treatment by Sex ==========                                   
                       | Sex 
             Treatment |   Female  |     Male  | Row Total | 
-----------------------|-----------|-----------|-----------|
     Placebo  Count    |       32  |       11  |       43  | 
              Row %    |   74.419% |   25.581% |   51.190% | 
              Column % |   54.237% |   44.000% |           | 
              Total %  |   38.095% |   13.095% |           | 
-----------------------|-----------|-----------|-----------|
     Treated  Count    |       27  |       14  |       41  | 
              Row %    |   65.854% |   34.146% |   48.810% | 
              Column % |   45.763% |   56.000% |           | 
              Total %  |   32.143% |   16.667% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       59  |       25  |       84  | 
              Column % |   70.238% |   29.762% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.476  

               ======================================================================================               
                                 ========== Table: Treatment by Improved ==========                                 
                       | Improved 
             Treatment |     None  |     Some  |   Marked  | Row Total | 
-----------------------|-----------|-----------|-----------|-----------|
     Placebo  Count    |       29  |        7  |        7  |       43  | 
              Row %    |   67.442% |   16.279% |   16.279% |   51.190% | 
              Column % |   69.048% |   50.000% |   25.000% |           | 
              Total %  |   34.524% |    8.333% |    8.333% |           | 
-----------------------|-----------|-----------|-----------|-----------|
     Treated  Count    |       13  |        7  |       21  |       41  | 
              Row %    |   31.707% |   17.073% |   51.220% |   48.810% | 
              Column % |   30.952% |   50.000% |   75.000% |           | 
              Total %  |   15.476% |    8.333% |   25.000% |           | 
-----------------------|-----------|-----------|-----------|-----------|
          Column Total |       42  |       14  |       28  |       84  | 
              Column % |   50.000% |   16.667% |   33.333% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              0.001  

               ======================================================================================               
                                ========== Table: Treatment by Treatment ==========                                
                       | Treatment 
             Treatment |  Placebo  |  Treated  | Row Total | 
-----------------------|-----------|-----------|-----------|
     Placebo  Count    |       43  |        0  |       43  | 
              Row %    |  100.000% |    0.000% |   51.190% | 
              Column % |  100.000% |    0.000% |           | 
              Total %  |   51.190% |    0.000% |           | 
-----------------------|-----------|-----------|-----------|
     Treated  Count    |        0  |       41  |       41  | 
              Row %    |    0.000% |  100.000% |   48.810% | 
              Column % |    0.000% |  100.000% |           | 
              Total %  |    0.000% |   48.810% |           | 
-----------------------|-----------|-----------|-----------|
          Column Total |       43  |       41  |       84  | 
              Column % |   51.190% |   48.810% |           | 

              | Exact               
         Test | Statistic DF p-value
Fishers Exact |              <0.001 





====================================================================================================================