This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist    
##  Min.   : 4.0   Min.   :  2  
##  1st Qu.:12.0   1st Qu.: 26  
##  Median :15.0   Median : 36  
##  Mean   :15.4   Mean   : 43  
##  3rd Qu.:19.0   3rd Qu.: 56  
##  Max.   :25.0   Max.   :120

You can also embed plots, for example:

plot of chunk unnamed-chunk-2

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

library(compareGroups)
## Loading required package: Hmisc
## Loading required package: grid
## Loading required package: lattice
## Loading required package: survival
## Loading required package: splines
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## 
## The following objects are masked from 'package:base':
## 
##     format.pval, round.POSIXt, trunc.POSIXt, units
## 
## Loading required package: xtable
## 
## Attaching package: 'xtable'
## 
## The following objects are masked from 'package:Hmisc':
## 
##     label, label<-
## 
## Loading required package: gdata
## gdata: Unable to locate valid perl interpreter
## gdata: 
## gdata: read.xls() will be unable to read Excel XLS and XLSX files
## gdata: unless the 'perl=' argument is used to specify the location
## gdata: of a valid perl intrpreter.
## gdata: 
## gdata: (To avoid display of this message in the future, please
## gdata: ensure perl is installed and available on the executable
## gdata: search path.)
## gdata: Unable to load perl libaries needed by read.xls()
## gdata: to support 'XLX' (Excel 97-2004) files.
## 
## gdata: Unable to load perl libaries needed by read.xls()
## gdata: to support 'XLSX' (Excel 2007+) files.
## 
## gdata: Run the function 'installXLSXsupport()'
## gdata: to automatically download and install the perl
## gdata: libaries needed to support Excel XLS and XLSX formats.
## 
## Attaching package: 'gdata'
## 
## The following object is masked from 'package:Hmisc':
## 
##     combine
## 
## The following object is masked from 'package:stats':
## 
##     nobs
## 
## The following object is masked from 'package:utils':
## 
##     object.size
## 
## Loading required package: SNPassoc
## Loading required package: haplo.stats
## Loading required package: mvtnorm
## Loading required package: parallel
data(predimed)
predimed$tmain <- with(predimed, Surv(toevent, event == "Yes"))
label(predimed$tmain) <- "AMI, stroke, or CV Death"
res=compareGroups(group ~ . - toevent - event, data = predimed)
res
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##    var                             N    p.value  method           
## 1  Sex                             6324 <0.001** categorical      
## 2  Age                             6324 0.003**  continuous normal
## 3  Smoking                         6324 0.444    categorical      
## 4  Body mass index                 6324 <0.001** continuous normal
## 5  Waist circumference             6324 0.045**  continuous normal
## 6  Waist-to-height ratio           6324 <0.001** continuous normal
## 7  Hypertension                    6324 0.249    categorical      
## 8  Type-2 diabetes                 6324 0.017**  categorical      
## 9  Dyslipidemia                    6324 0.423    categorical      
## 10 Family history of premature CHD 6324 0.581    categorical      
## 11 Hormone-replacement therapy     5661 0.850    categorical      
## 12 MeDiet Adherence score          6324 <0.001** continuous normal
## 13 AMI, stroke, or CV Death        6324 0.011**  Surv [Tmax=4.79] 
##    selection
## 1  ALL      
## 2  ALL      
## 3  ALL      
## 4  ALL      
## 5  ALL      
## 6  ALL      
## 7  ALL      
## 8  ALL      
## 9  ALL      
## 10 ALL      
## 11 ALL      
## 12 ALL      
## 13 ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
createTable(res)
## 
## --------Summary descriptives table by 'Intervention group'---------
## 
## ____________________________________________________________________________________ 
##                                    Control    MedDiet + Nuts MedDiet + VOO p.overall 
##                                     N=2042        N=2100        N=2182               
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Sex:                                                                        <0.001   
##     Male                         812 (39.8%)   968 (46.1%)    899 (41.2%)            
##     Female                       1230 (60.2%)  1132 (53.9%)  1283 (58.8%)            
## Age                              67.3 (6.28)   66.7 (6.02)    67.0 (6.21)    0.003   
## Smoking:                                                                     0.444   
##     Never                        1282 (62.8%)  1259 (60.0%)  1351 (61.9%)            
##     Current                      270 (13.2%)   296 (14.1%)    292 (13.4%)            
##     Former                       490 (24.0%)   545 (26.0%)    539 (24.7%)            
## Body mass index                  30.3 (3.96)   29.7 (3.77)    29.9 (3.71)   <0.001   
## Waist circumference               101 (10.8)    100 (10.6)    100 (10.4)     0.045   
## Waist-to-height ratio            0.63 (0.07)   0.62 (0.06)    0.63 (0.06)   <0.001   
## Hypertension:                                                                0.249   
##     No                           331 (16.2%)   362 (17.2%)    396 (18.1%)            
##     Yes                          1711 (83.8%)  1738 (82.8%)  1786 (81.9%)            
## Type-2 diabetes:                                                             0.017   
##     No                           1072 (52.5%)  1150 (54.8%)  1100 (50.4%)            
##     Yes                          970 (47.5%)   950 (45.2%)   1082 (49.6%)            
## Dyslipidemia:                                                                0.423   
##     No                           563 (27.6%)   561 (26.7%)    622 (28.5%)            
##     Yes                          1479 (72.4%)  1539 (73.3%)  1560 (71.5%)            
## Family history of premature CHD:                                             0.581   
##     No                           1580 (77.4%)  1640 (78.1%)  1675 (76.8%)            
##     Yes                          462 (22.6%)   460 (21.9%)    507 (23.2%)            
## Hormone-replacement therapy:                                                 0.850   
##     No                           1811 (98.3%)  1835 (98.4%)  1918 (98.2%)            
##     Yes                           31 (1.68%)    30 (1.61%)    36 (1.84%)             
## MeDiet Adherence score           8.44 (1.94)   8.81 (1.90)    8.77 (1.97)   <0.001   
## AMI, stroke, or CV Death            5.80%         3.58%          3.76%       0.011   
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
compareGroups(group ~ . -toevent -event ,data=predimed)
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##    var                             N    p.value  method           
## 1  Sex                             6324 <0.001** categorical      
## 2  Age                             6324 0.003**  continuous normal
## 3  Smoking                         6324 0.444    categorical      
## 4  Body mass index                 6324 <0.001** continuous normal
## 5  Waist circumference             6324 0.045**  continuous normal
## 6  Waist-to-height ratio           6324 <0.001** continuous normal
## 7  Hypertension                    6324 0.249    categorical      
## 8  Type-2 diabetes                 6324 0.017**  categorical      
## 9  Dyslipidemia                    6324 0.423    categorical      
## 10 Family history of premature CHD 6324 0.581    categorical      
## 11 Hormone-replacement therapy     5661 0.850    categorical      
## 12 MeDiet Adherence score          6324 <0.001** continuous normal
## 13 AMI, stroke, or CV Death        6324 0.011**  Surv [Tmax=4.79] 
##    selection
## 1  ALL      
## 2  ALL      
## 3  ALL      
## 4  ALL      
## 5  ALL      
## 6  ALL      
## 7  ALL      
## 8  ALL      
## 9  ALL      
## 10 ALL      
## 11 ALL      
## 12 ALL      
## 13 ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
res=compareGroups(group ~ age + sex + smoke + waist + hormo ,data=predimed)
res
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var                         N    p.value  method            selection
## 1 Age                         6324 0.003**  continuous normal ALL      
## 2 Sex                         6324 <0.001** categorical       ALL      
## 3 Smoking                     6324 0.444    categorical       ALL      
## 4 Waist circumference         6324 0.045**  continuous normal ALL      
## 5 Hormone-replacement therapy 5661 0.850    categorical       ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
compareGroups(group ~ age + sex + smoke + waist + hormo ,data=predimed,
              subset=sex=="Female")
## Warning: Some levels of 'sex' are removed since no observation in that/those levels
## Warning: 표준편차가 0입니다
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var                         N    p.value method           
## 1 Age                         3645 0.056*  continuous normal
## 2 Sex                         3645 .       categorical      
## 3 Smoking                     3645 0.907   categorical      
## 4 Waist circumference         3645 0.016** continuous normal
## 5 Hormone-replacement therapy 3459 0.898   categorical      
##   selection      
## 1 sex == "Female"
## 2 sex == "Female"
## 3 sex == "Female"
## 4 sex == "Female"
## 5 sex == "Female"
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
compareGroups(group ~ age + smoke + waist + hormo, data=predimed,
              selec = list(waist= !is.na(hormo)), subset = sex=="Female")
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var                         N    p.value method           
## 1 Age                         3645 0.056*  continuous normal
## 2 Smoking                     3645 0.907   categorical      
## 3 Waist circumference         3459 0.007** continuous normal
## 4 Hormone-replacement therapy 3459 0.898   categorical      
##   selection                          
## 1 sex == "Female"                    
## 2 sex == "Female"                    
## 3 (sex == "Female") & (!is.na(hormo))
## 4 sex == "Female"                    
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
compareGroups(group ~ age + sex + bmi + bmi +bmi+ waist + hormo, data=predimed,
              selec = list(bmi.1=!is.na(hormo),bmi.2=sex=="Female"))
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var                         N    p.value  method           
## 1 Age                         6324 0.003**  continuous normal
## 2 Sex                         6324 <0.001** categorical      
## 3 Body mass index             6324 <0.001** continuous normal
## 4 Body mass index             5661 <0.001** continuous normal
## 5 Body mass index             3645 0.002**  continuous normal
## 6 Waist circumference         6324 0.045**  continuous normal
## 7 Hormone-replacement therapy 5661 0.850    categorical      
##   selection      
## 1 ALL            
## 2 ALL            
## 3 ALL            
## 4 !is.na(hormo)  
## 5 sex == "Female"
## 6 ALL            
## 7 ALL            
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
compareGroups(group~age+smoke+waist+hormo,data=predimed, method=c(waist=2))
## Warning: Cannot compute exact p-value with ties
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var                         N    p.value method                selection
## 1 Age                         6324 0.003** continuous normal     ALL      
## 2 Smoking                     6324 0.444   categorical           ALL      
## 3 Waist circumference         6324 0.085*  continuous non-normal ALL      
## 4 Hormone-replacement therapy 5661 0.850   categorical           ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
compareGroups(group~age+smoke+waist+hormo,data=predimed,
              method=c(waist=NA),alpha=0.01)
## Warning: Cannot compute exact p-value with ties
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var                         N    p.value method                selection
## 1 Age                         6324 0.003** continuous normal     ALL      
## 2 Smoking                     6324 0.444   categorical           ALL      
## 3 Waist circumference         6324 0.085*  continuous non-normal ALL      
## 4 Hormone-replacement therapy 5661 0.850   categorical           ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
library(car)
cuts<-"lo:55=1; 56:60=2; 61:65=3; 66:70=4; 71:75=5; 76:80=6; 81:hi=7"
library(car)
predimed$age7gr<-car::recode(predimed$age, cuts)
compareGroups(group ~ age7gr, data=predimed, method = c(age7gr=NA))
## Warning: Cannot compute exact p-value with ties
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var N    p.value method                selection
## 1 Age 6324 0.007** continuous non-normal ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
compareGroups(group ~ age7gr, data=predimed, method = c(age7gr=NA), min.dis=8)
## Warning: variable 'age7gr' converted to factor since few different values
## contained
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var N    p.value method      selection
## 1 Age 6324 0.009** categorical ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
compareGroups(age7gr ~ sex+bmi+waist, data=predimed,max.ylev=7)
## 
## 
## -------- Summary of results by groups of 'Age'---------
## 
## 
##   var                 N    p.value  method            selection
## 1 Sex                 6324 <0.001** categorical       ALL      
## 2 Body mass index     6324 0.021**  continuous normal ALL      
## 3 Waist circumference 6324 0.034**  continuous normal ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
compareGroups(group ~ sex + age7gr, method= (age7gr=3), data=predimed, max.xlev=5)
## Warning: Variables 'age7gr' have been removed since some errors occurred
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var N    p.value  method      selection
## 1 Sex 6324 <0.001** categorical ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
resu1<-compareGroups(group ~ age + waist, data=predimed, method = c(waist=2))
## Warning: Cannot compute exact p-value with ties
createTable(resu1)
## 
## --------Summary descriptives table by 'Intervention group'---------
## 
## __________________________________________________________________________ 
##                        Control     MedDiet + Nuts MedDiet + VOO  p.overall 
##                         N=2042         N=2100         N=2182               
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age                  67.3 (6.28)    66.7 (6.02)    67.0 (6.21)     0.003   
## Waist circumference 101 [94.0;108] 100 [93.0;107] 100 [93.0;107]   0.085   
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
resu2<-compareGroups(group ~ age + smoke + waist + hormo, data=predimed,
                     method = c(waist=2), Q1=0.025, Q3=0.975)
## Warning: Cannot compute exact p-value with ties
createTable(resu2)
## 
## --------Summary descriptives table by 'Intervention group'---------
## 
## ___________________________________________________________________________________ 
##                                 Control     MedDiet + Nuts MedDiet + VOO  p.overall 
##                                  N=2042         N=2100         N=2182               
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age                           67.3 (6.28)    66.7 (6.02)    67.0 (6.21)     0.003   
## Smoking:                                                                    0.444   
##     Never                     1282 (62.8%)   1259 (60.0%)   1351 (61.9%)            
##     Current                   270 (13.2%)    296 (14.1%)    292 (13.4%)             
##     Former                    490 (24.0%)    545 (26.0%)    539 (24.7%)             
## Waist circumference          101 [80.0;123] 100 [80.0;121] 100 [80.0;121]   0.085   
## Hormone-replacement therapy:                                                0.850   
##     No                        1811 (98.3%)   1835 (98.4%)   1918 (98.2%)            
##     Yes                        31 (1.68%)     30 (1.61%)     36 (1.84%)             
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
resu3=compareGroups(group ~ age + smoke + waist + hormo, data=predimed,
                    method = c(waist=2), Q1=0, Q3=1)
## Warning: Cannot compute exact p-value with ties
createTable(resu3)
## 
## --------Summary descriptives table by 'Intervention group'---------
## 
## ___________________________________________________________________________________ 
##                                 Control     MedDiet + Nuts MedDiet + VOO  p.overall 
##                                  N=2042         N=2100         N=2182               
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age                           67.3 (6.28)    66.7 (6.02)    67.0 (6.21)     0.003   
## Smoking:                                                                    0.444   
##     Never                     1282 (62.8%)   1259 (60.0%)   1351 (61.9%)            
##     Current                   270 (13.2%)    296 (14.1%)    292 (13.4%)             
##     Former                    490 (24.0%)    545 (26.0%)    539 (24.7%)             
## Waist circumference          101 [58.0;177] 100 [61.0;150] 100 [50.0;176]   0.085   
## Hormone-replacement therapy:                                                0.850   
##     No                        1811 (98.3%)   1835 (98.4%)   1918 (98.2%)            
##     Yes                        31 (1.68%)     30 (1.61%)     36 (1.84%)             
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
res<-compareGroups(group ~ age + sex + smoke + waist + hormo, method =c(waist=2), data=predimed)
## Warning: Cannot compute exact p-value with ties
summary(res[c(1,2,4)])
## Warning: Cannot compute exact p-value with ties
## 
##  --- Descriptives of each row-variable by groups of 'Intervention group' ---
## 
## ------------------- 
## row-variable: Age 
## 
##                N    mean  sd    p.overall p.trend
## [ALL]          6324 67.01 6.175                  
## Control        2042 67.34 6.28  0.002666  0.1012 
## MedDiet + Nuts 2100 66.68 6.016                  
## MedDiet + VOO  2182 67.02 6.213                  
##                p.Control vs MedDiet + Nuts p.Control vs MedDiet + VOO
## [ALL]                                                                
## Control        0.001672                    0.206                     
## MedDiet + Nuts                                                       
## MedDiet + VOO                                                        
##                p.MedDiet + Nuts vs MedDiet + VOO
## [ALL]                                           
## Control        0.1727                           
## MedDiet + Nuts                                  
## MedDiet + VOO                                   
## 
## ------------------- 
## row-variable: Sex 
## 
##                Male Female Male (row%) Female (row%) p.overall p.trend
## [ALL]          2679 3645   42.36       57.64                          
## Control        812  1230   39.76       60.24         8.1e-05   0.3884 
## MedDiet + Nuts 968  1132   46.1        53.9                           
## MedDiet + VOO  899  1283   41.2        58.8                           
##                p.Control vs MedDiet + Nuts p.Control vs MedDiet + VOO
## [ALL]                                                                
## Control        0.000133                    0.3583                    
## MedDiet + Nuts                                                       
## MedDiet + VOO                                                        
##                p.MedDiet + Nuts vs MedDiet + VOO
## [ALL]                                           
## Control        0.002076                         
## MedDiet + Nuts                                  
## MedDiet + VOO                                   
## 
## ------------------- 
## row-variable: Waist circumference 
## 
##                N    med Q1 Q3  p.overall p.trend
## [ALL]          6324 100 93 107                  
## Control        2042 101 94 108 0.0846    0.03956
## MedDiet + Nuts 2100 100 93 107                  
## MedDiet + VOO  2182 100 93 107                  
##                p.Control vs MedDiet + Nuts p.Control vs MedDiet + VOO
## [ALL]                                                                
## Control        0.1258                      0.1106                    
## MedDiet + Nuts                                                       
## MedDiet + VOO                                                        
##                p.MedDiet + Nuts vs MedDiet + VOO
## [ALL]                                           
## Control        0.7435                           
## MedDiet + Nuts                                  
## MedDiet + VOO
library(plot2groups)
plot(res[c(1,2)],bivar=TRUE)
## Warning: variables waist specified in 'method' not found
plot(res[c(1,2)],bivar=TRUE)
## Warning: variables waist specified in 'method' not found
res<-compareGroups(group ~ age + sex + smoke + waist + hormo, data=predimed)
res
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var                         N    p.value  method            selection
## 1 Age                         6324 0.003**  continuous normal ALL      
## 2 Sex                         6324 <0.001** categorical       ALL      
## 3 Smoking                     6324 0.444    categorical       ALL      
## 4 Waist circumference         6324 0.045**  continuous normal ALL      
## 5 Hormone-replacement therapy 5661 0.850    categorical       ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
res<-update(res, . ~. -sex + bmi + toevent, subset = sex=="Female", method = c(waist=2, toevent=2), selec = list(bmi=!is.na(hormo)))
## Warning: Cannot compute exact p-value with ties
## Warning: Cannot compute exact p-value with ties
res
## 
## 
## -------- Summary of results by groups of 'Intervention group'---------
## 
## 
##   var                             N    p.value  method               
## 1 Age                             3645 0.056*   continuous normal    
## 2 Smoking                         3645 0.907    categorical          
## 3 Waist circumference             3645 0.037**  continuous non-normal
## 4 Hormone-replacement therapy     3459 0.898    categorical          
## 5 Body mass index                 3459 0.002**  continuous normal    
## 6 follow-up to main event (years) 3645 <0.001** continuous non-normal
##   selection                          
## 1 sex == "Female"                    
## 2 sex == "Female"                    
## 3 sex == "Female"                    
## 4 sex == "Female"                    
## 5 (sex == "Female") & (!is.na(hormo))
## 6 sex == "Female"                    
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
res1=compareGroups(htn~age+sex+bmi+smoke,data=predimed,ref=1)
createTable(res1,show.ratio=TRUE)
## 
## --------Summary descriptives table by 'Hypertension'---------
## 
## ___________________________________________________________________________ 
##                     No          Yes             OR        p.ratio p.overall 
##                   N=1089       N=5235                                       
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age             65.9 (6.19) 67.2 (6.15)  1.04 [1.03;1.05] <0.001   <0.001   
## Sex:                                                               <0.001   
##     Male        595 (54.6%) 2084 (39.8%)       Ref.        Ref.             
##     Female      494 (45.4%) 3151 (60.2%) 1.82 [1.60;2.08]  0.000            
## Body mass index 28.9 (3.69) 30.2 (3.80)  1.10 [1.08;1.12] <0.001   <0.001   
## Smoking:                                                           <0.001   
##     Never       536 (49.2%) 3356 (64.1%)       Ref.        Ref.             
##     Current     233 (21.4%) 625 (11.9%)  0.43 [0.36;0.51]  0.000            
##     Former      320 (29.4%) 1254 (24.0%) 0.63 [0.54;0.73] <0.001            
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
res2=compareGroups(htn~age+sex+bmi+smoke,data=predimed, ref=c(smoke=1,sex=2))
createTable(res2,show.ratio=TRUE)
## 
## --------Summary descriptives table by 'Hypertension'---------
## 
## ___________________________________________________________________________ 
##                     No          Yes             OR        p.ratio p.overall 
##                   N=1089       N=5235                                       
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age             65.9 (6.19) 67.2 (6.15)  1.04 [1.03;1.05] <0.001   <0.001   
## Sex:                                                               <0.001   
##     Male        595 (54.6%) 2084 (39.8%) 0.55 [0.48;0.63]  0.000            
##     Female      494 (45.4%) 3151 (60.2%)       Ref.        Ref.             
## Body mass index 28.9 (3.69) 30.2 (3.80)  1.10 [1.08;1.12] <0.001   <0.001   
## Smoking:                                                           <0.001   
##     Never       536 (49.2%) 3356 (64.1%)       Ref.        Ref.             
##     Current     233 (21.4%) 625 (11.9%)  0.43 [0.36;0.51]  0.000            
##     Former      320 (29.4%) 1254 (24.0%) 0.63 [0.54;0.73] <0.001            
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
res<-compareGroups(htn~age+sex+bmi+hormo+hyperchol,data=predimed, ref.no="NO")
createTable(res,show.ratio=TRUE)
## 
## --------Summary descriptives table by 'Hypertension'---------
## 
## ________________________________________________________________________________________ 
##                                  No          Yes             OR        p.ratio p.overall 
##                                N=1089       N=5235                                       
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age                          65.9 (6.19) 67.2 (6.15)  1.04 [1.03;1.05] <0.001   <0.001   
## Sex:                                                                            <0.001   
##     Male                     595 (54.6%) 2084 (39.8%)       Ref.        Ref.             
##     Female                   494 (45.4%) 3151 (60.2%) 1.82 [1.60;2.08]  0.000            
## Body mass index              28.9 (3.69) 30.2 (3.80)  1.10 [1.08;1.12] <0.001   <0.001   
## Hormone-replacement therapy:                                                     0.856   
##     No                       928 (98.4%) 4636 (98.3%)       Ref.        Ref.             
##     Yes                      15 (1.59%)   82 (1.74%)  1.08 [0.64;1.97]  0.773            
## Dyslipidemia:                                                                   <0.001   
##     No                       409 (37.6%) 1337 (25.5%)       Ref.        Ref.             
##     Yes                      680 (62.4%) 3898 (74.5%) 1.75 [1.53;2.01] <0.001            
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
res<-compareGroups(htn~age+bmi, data=predimed)
createTable(res, show.ratio=TRUE)
## 
## --------Summary descriptives table by 'Hypertension'---------
## 
## __________________________________________________________________________ 
##                     No          Yes            OR        p.ratio p.overall 
##                   N=1089      N=5235                                       
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age             65.9 (6.19) 67.2 (6.15) 1.04 [1.03;1.05] <0.001   <0.001   
## Body mass index 28.9 (3.69) 30.2 (3.80) 1.10 [1.08;1.12] <0.001   <0.001   
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
res<-compareGroups(htn~age+bmi,data=predimed,fact.ratio=c(age=10,bmi=2))
createTable(res, show.ratio=TRUE)
## 
## --------Summary descriptives table by 'Hypertension'---------
## 
## __________________________________________________________________________ 
##                     No          Yes            OR        p.ratio p.overall 
##                   N=1089      N=5235                                       
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age             65.9 (6.19) 67.2 (6.15) 1.43 [1.28;1.59] <0.001   <0.001   
## Body mass index 28.9 (3.69) 30.2 (3.80) 1.22 [1.17;1.26] <0.001   <0.001   
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
res<-compareGroups(htn~age+sex+bmi+hyperchol, data=predimed, ref.y=2)
createTable(res,show.ratio=TRUE)
## 
## --------Summary descriptives table by 'Hypertension'---------
## 
## ___________________________________________________________________________ 
##                     No          Yes             OR        p.ratio p.overall 
##                   N=1089       N=5235                                       
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF> 
## Age             65.9 (6.19) 67.2 (6.15)  0.96 [0.98;0.95] <0.001   <0.001   
## Sex:                                                               <0.001   
##     Male        595 (54.6%) 2084 (39.8%)       Ref.        Ref.             
##     Female      494 (45.4%) 3151 (60.2%) 0.55 [0.48;0.63]  0.000            
## Body mass index 28.9 (3.69) 30.2 (3.80)  0.91 [0.92;0.89] <0.001   <0.001   
## Dyslipidemia:                                                      <0.001   
##     No          409 (37.6%) 1337 (25.5%)       Ref.        Ref.             
##     Yes         680 (62.4%) 3898 (74.5%) 0.57 [0.50;0.65] <0.001            
## <U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF><U+00AF>
plot(compareGroups(tmain~sex,data=predimed), bivar=TRUE)
plot(compareGroups(tmain~age,data=predimed), bivar=TRUE)