Task:
1.Load in the mtcars dataset.
2.Use the exploratory functions you learned today to get an initial view.
3. Do histograms of the variables - are they normally distributed? Feel free to play around with the function parameters, to make the plots more beautiful. Hint: check the documentation of the function to check what parameters you can control.
4.Plot several plots next to each other.
5.Do the shapiro test to make sure what you see is right.
library(datasets)
data(mtcars)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
summary(mtcars)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
par(mar=c(1,1,1,1)+0)
attach(mtcars)
par(mfrow=c(2,3), mai = c(1, 0.1, 0.1, 0.1))
hist(mpg)
hist(cyl)
hist(disp)
qqnorm(mpg); qqline(mpg, col = 2)
qqnorm(cyl); qqline(cyl, col = 2)
qqnorm(disp); qqline(disp, col = 2)
shapiro.test(mpg)
##
## Shapiro-Wilk normality test
##
## data: mpg
## W = 0.9476, p-value = 0.1229
shapiro.test(cyl)
##
## Shapiro-Wilk normality test
##
## data: cyl
## W = 0.7533, p-value = 6.058e-06
shapiro.test(disp)
##
## Shapiro-Wilk normality test
##
## data: disp
## W = 0.92, p-value = 0.02081
par(mfrow=c(2,3))
hist(hp)
hist(drat)
hist(wt)
qqnorm(hp); qqline(hp, col = 2)
qqnorm(drat); qqline(drat, col = 2)
qqnorm(wt); qqline(wt, col = 2)
shapiro.test(hp)
##
## Shapiro-Wilk normality test
##
## data: hp
## W = 0.9334, p-value = 0.04881
shapiro.test(drat)
##
## Shapiro-Wilk normality test
##
## data: drat
## W = 0.9459, p-value = 0.1101
shapiro.test(wt)
##
## Shapiro-Wilk normality test
##
## data: wt
## W = 0.9433, p-value = 0.09265
par(mfrow=c(2,3), mai = c(1, 0.1, 0.1, 0.1))
hist(qsec)
hist(vs)
hist(am)
qqnorm(qsec); qqline(qsec, col = 2)
qqnorm(vs); qqline(vs, col = 2)
qqnorm(am); qqline(am, col = 2)
shapiro.test(qsec)
##
## Shapiro-Wilk normality test
##
## data: qsec
## W = 0.9733, p-value = 0.5935
shapiro.test(vs)
##
## Shapiro-Wilk normality test
##
## data: vs
## W = 0.6323, p-value = 9.737e-08
shapiro.test(am)
##
## Shapiro-Wilk normality test
##
## data: am
## W = 0.6251, p-value = 7.836e-08
par(mfrow=c(2,2))
hist(carb)
qqnorm(carb);qqline(carb,col=2)
hist(gear)
qqnorm(gear); qqline(gear, col = 2)
shapiro.test(carb)
##
## Shapiro-Wilk normality test
##
## data: carb
## W = 0.8511, p-value = 0.0004382
shapiro.test(gear)
##
## Shapiro-Wilk normality test
##
## data: gear
## W = 0.7728, p-value = 1.307e-05
attach(mtcars)
## The following objects are masked from mtcars (pos = 3):
##
## am, carb, cyl, disp, drat, gear, hp, mpg, qsec, vs, wt
par(mfrow=c(2,2), mai = c(1, 0.1, 0.1, 0.1))
plot(wt,mpg)
plot(wt,qsec)
plot(drat,wt)
Variables ‘disp’ and ‘hp’ are not normally distributed since the p-value of Shapiro’s test is lower than 0,05 We can assume that other variables tested in this example are normally distributed