exp(pi)
[1] 23.14069
4a) \(x^2y''+2xy'=0\); \(x>0\); \(y1(x)=1\)
Se propone la segunda solución \[y=v(x)y_1\] \[y=v(x)1\] por lo que al derivar \[y'=v'\] \[y''=v''\] sustituyendo \[x^2v''+2xv'=0\] sea \[p=v'\rightarrow p'=v''\] sustituyendo en la ecuación original \[x^2p'+2xp=0\] Resoviendo por separación de variables \[\dfrac{dp}{dx}=\dfrac{-2xp}{x^2}\] \[\dfrac{dp}{p}=\dfrac{-2dx}{x}\] \[ln(p)=-2ln(x)\] \[p=x^{-2}\] Entonces \[\dfrac{dy}{dx}=x^{-2}\] \[y=\int x^{-2}dx\] \[y_2=-\dfrac{1}{x}+c\]
#Esto es un texto
4b) \(x^2y''+2xy'-2y=0\); \(x>0\); \(y_1(x)=x\)
Se propone la segunda solución \[y_2=v(x)x\] Derivando \[y'_2=v'x+v\] \[y''_2=v''x+v'+v'\] Sustituyendo en la ecuación original \[x^2(v''x+2v')+2x(v'x+v)-2vx=0\] \[v''x^2+v'(2x^2+2x^2)+v(2x-2x)=0\] \[x^2v''+4x^2v'=0\] Sea \[p=v'\rightarrow p'=v''\] \[x^2p'+4x^2p=0\] Resolviendo por separación de varibales \[\dfrac{dp}{dx}=\dfrac{-4x^2p}{x^2}\] \[\int \dfrac{dp}{p}=\int -4dx\] \[ln(p)=-4x+c\] \[p=c_1e^{-4x}\] Entonces \[\dfrac{dy}{dx}=c_1e^{-4x}\] \[y=\int c_1e{-4x}dx\] \[y_2(x)=-\dfrac{c_1}{4}e^{-4x}+c_2\]
#next
4c) \(x^2y''3xy'+y=0\); \(x>0\); \(y_1(x)=x^{-1}\)
Se propone la segunda solución \[y_2=v(x)x^{-1}\] Derivando \[y'=v'x^{-1}-vx^{-2}\] \[y''=v''x^{-1}-v'x^{-2}-(v'x^{-2}-2vx^{-3})\] \[y''=v''x^{-1}+2vx^{-3}\] Sustituyo en la ed original \[x^{2}(v''x^{-1}+2vx^{-3})+3x(v'x^{-1}-vx^{-2})+vx^{-1}=0\] \[v''x+v'(3)+v(2x^{-1}-3x^{-1}+x^{-1})=0\] \[v''x+3v'=0\] Sea \[p=v'\rightarrow p'=v''\] Sustituyendo y resolviendo por separación de variables \[p'x+3p=0\] \[\dfrac{dp}{dx}=-3p\] \[\dfrac{dp}{p}={-3dx}\] \[ln(p)=-3x+c\] \[p=c_1e^{-3x}\] Solucionando para \(y_2\) \[\int dy=\int c_1e^{-3x}dx\] \[y_2=-\dfrac{c_1}{3}e^{-3x}+c_2\]
sqrt(pi)
[1] 1.772454
5a) \[y''-2y'-3y=3e^{2x}\] 1.-Encontrar la solución de la ecuacion homogenea. \[y''-2y'-3y=0\] \[m^2-2m-3=0\] \[(m-3)(m+1)=0\] \[m_1=3 ; m_2=-1\] \[y_H=c_1e^{3x}+c_2e^{-x}\] Dado que \(g(x)=3e^{2x}\) se sugiere una solucion particular d ela forma \[Y_p=Ae^{2x}\] Entonces \[Y'_p=2Ae^{2x}\rightarrow Y''_p=4Ae^{2x}\] por lo que la ec. dif. queda como: \[4Ae^{2x}-3(2Ae^{2x})-4Ae^{2x}=2e^{2x}\] \[(4A-6A-4A)e^{2x}=3e^{2x}\] \[-6A=3\]
\[A=-\dfrac{1}{2}\] \[Y_p=-\dfrac{1}{2}e^{2x}\] \[Y=Y_H+Y_P\] \[Y=c_1e^{3x}+c_2e^{-x}-\dfrac{1}{2}e^{2x}\]
sqrt(2)
[1] 1.414214
5b) \[u''+w^2_0u=cos(wx)\] 1.- Encontrar la solucion homogenea. \[u''-w_0^2u=0\] \[m^2-w^2_0=0\] \[m_1=w_0i;m_2=-w_0i\] \[u_1=c_1e^{w_0ix};u_2=c_2e^{-w_0ix}\] Solucion general \[u_H=c_1e^{w_0ix}+\dfrac{c_2}{e^{w_0ix}}\] \[u_H=c_1(cos(w_0x)+isen(w_0x))+c_2(cos(w_0x)-isen(w_0x))\] \[u_H=(c_1+c_2)cos(w_0x)+i(c_1-c_2)sen(w_0x)\] \[u_H=c_1cos(w_0x)+c_2sen(w_0x)\]
Solucionando la ecuacion particular para \(g(x)=cos(wx)\), suguiere que la solucion debe ser de la forma \[u_P=Asen(wx)+Bcos(wx)\] \[u'_P=Awcos(wx)-Bwsen(wx)\rightarrow u''_P=-Aw^2sen(wx)-Bw^2cos(wx)\] Sustituyendo en la ec. dif. original \[-Aw^2sen(wx)-Bw^2cos(wx)+w^2_0(Asen(wx)+Bcos(wx))=cos(wx)\] \[(-Aw^2+Aw^2_0)sen(wx)+(-Bw^2+Bw_0^2)cos(wx)=cos(wx)\] \[-Aw^2+Aw^2_0=0\] \[-Bw^2+Bw_0^2=1\] \[A=0\] \[B(-w^2+w_0^2)=1\] \[B=\dfrac{1}{-w^2+w_0^2}\]
\[u_P=\dfrac{1}{-w^2+w_0^2}cos(wx)\] \[u=\dfrac{1}{-w^2+w_0^2}cos(wx)+c_1cos(w_0x)+c_2sen(w_0x)\]
######
5c) \[y''+y'+4y=2senh(x)\] Solucionar la parte homogenea. \[\dfrac{d^2y}{dx^2}+\dfrac{dy}{dx}+4y=0\] \[m^2+m+4=0\] \[m=\dfrac{-1\pm\sqrt{1^2-4(1)(4)}}{2}\] \[m_1=-\dfrac{1}{2}+\dfrac{i\sqrt{15}}{2} \rightarrow m_2=-\dfrac{1}{2}-\dfrac{i\sqrt{15}}{2}\] Entonces la solucón general esta dada por \[y=c_1e^{( -\dfrac{1}{2}+\dfrac{i\sqrt{15}}{2})x}+c_2e^{(-\dfrac{1}{2}-\dfrac{i\sqrt{15}}{2})x}\] Dado la ecuacion de Euler \(e^{\alpha+\beta i}=e^\alpha cos(\beta)+ie^\alpha sen(\beta))\) \[y=c_1(e^{-\dfrac{x}{2}}cos(\dfrac{\sqrt{15}}{2}x)+ie^{-\dfrac{x}{2}}sen(\dfrac{\sqrt{15}}{2}x))\] \[+c_1(e^{-\dfrac{x}{2}}cos(\dfrac{\sqrt{15}}{2}x)-ie^{-\dfrac{x}{2}}sen(\dfrac{\sqrt{15}}{2}x))\]
\[y_H=(c_1+c_2)e^{-\dfrac{x}{2}}cos(\dfrac{\sqrt{15}}{2}x)+i(c_1-c_2)e^{-\dfrac{x}{2}}sen(\dfrac{\sqrt{15}}{2}x)\] Determinar la solución particular, dado \(senh(x)=\dfrac{e^x}{2}-\dfrac{e^{-x}}{2}\), ya que \(g(x)\) es una suma de funciones encontratesmos las dos soluciones particulares. Notamos que son de la forma \(a_1e^x\) y \(a_2e^{-1}\), asi que la solucion particular sera de la forma \(y_P=a_1e^x+a_2e^{-x}\). Queda el problema de encontra \(a_1,a_2\) \[y_p'=a_1e^x-a_2e^{-x}\] \[y''_p=a_1e^x+a_2e^{-x}\] Sustituyendo en la ecuacion original \[(a_1e^x+a_2e^{-x})+(a_1e^x-a_2e^{-x})+4(a_1e^x+a_2e^{-x})=\dfrac{e^x}{2}+\frac{e^{-1}}{2}\] \[6a_1e^x+4a_2e^{-x}=\dfrac{e^x}{2}-\frac{e^{-x}}{2}\] Asi pues \(a_2=-\dfrac{1}{8}\) y \(a_1=\dfrac{1}{12}\), y \[y_p=\dfrac{e^x}{12}-\frac{e^{-x}}{8}\] Ahora si renombramos \(c_1=(c_1+c_2)\) y \(c_2=i(c_1-c_2)\) \[y=y_H+y_P\] \[y=\dfrac{e^x}{12}-\frac{e^{-x}}{8}+c_1e^{-\dfrac{x}{2}}cos(\dfrac{\sqrt{15}}{2}x)+c_2e^{-\dfrac{x}{2}}sen(\dfrac{\sqrt{15}}{2}x)\]
LS0tDQp0aXRsZTogIlRhcmVhIE1vZHVsbyAyIEVEIg0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIHBkZl9kb2N1bWVudDogZGVmYXVsdA0KYXV0b3I6IFJvbGFuZG8gVGFtYXlvDQotLS0NCmBgYHtyfQ0KZXhwKHBpKQ0KYGBgDQoNCjRhKSANCiR4XjJ5JycrMnh5Jz0wJDsgJHg+MCQ7ICAkeTEoeCk9MSQNCg0KU2UgcHJvcG9uZSBsYSBzZWd1bmRhIHNvbHVjacOzbg0KJCR5PXYoeCl5XzEkJA0KJCR5PXYoeCkxJCQNCnBvciBsbyBxdWUgYWwgZGVyaXZhcg0KJCR5Jz12JyQkDQokJHknJz12JyckJA0Kc3VzdGl0dXllbmRvDQokJHheMnYnJysyeHYnPTAkJA0Kc2VhIA0KJCRwPXYnXHJpZ2h0YXJyb3cgcCc9dicnJCQNCnN1c3RpdHV5ZW5kbyBlbiBsYSBlY3VhY2nDs24gb3JpZ2luYWwNCiQkeF4ycCcrMnhwPTAkJA0KUmVzb3ZpZW5kbyBwb3Igc2VwYXJhY2nDs24gZGUgdmFyaWFibGVzDQokJFxkZnJhY3tkcH17ZHh9PVxkZnJhY3stMnhwfXt4XjJ9JCQNCiQkXGRmcmFje2RwfXtwfT1cZGZyYWN7LTJkeH17eH0kJA0KJCRsbihwKT0tMmxuKHgpJCQNCiQkcD14XnstMn0kJA0KRW50b25jZXMNCiQkXGRmcmFje2R5fXtkeH09eF57LTJ9JCQNCiQkeT1caW50IHheey0yfWR4JCQNCiQkeV8yPS1cZGZyYWN7MX17eH0rYyQkDQpgYGB7cn0NCiNFc3RvIGVzIHVuIHRleHRvDQpgYGANCg0KNGIpICR4XjJ5JycrMnh5Jy0yeT0wJDsgJHg+MCQ7ICR5XzEoeCk9eCQNCg0KU2UgcHJvcG9uZSBsYSBzZWd1bmRhIHNvbHVjacOzbg0KJCR5XzI9dih4KXgkJA0KRGVyaXZhbmRvDQokJHknXzI9did4K3YkJA0KJCR5JydfMj12Jyd4K3YnK3YnJCQNClN1c3RpdHV5ZW5kbyBlbiBsYSBlY3VhY2nDs24gb3JpZ2luYWwNCiQkeF4yKHYnJ3grMnYnKSsyeCh2J3grdiktMnZ4PTAkJA0KJCR2Jyd4XjIrdicoMnheMisyeF4yKSt2KDJ4LTJ4KT0wJCQNCiQkeF4ydicnKzR4XjJ2Jz0wJCQNClNlYQ0KJCRwPXYnXHJpZ2h0YXJyb3cgcCc9dicnJCQNCiQkeF4ycCcrNHheMnA9MCQkDQpSZXNvbHZpZW5kbyBwb3Igc2VwYXJhY2nDs24gZGUgdmFyaWJhbGVzDQokJFxkZnJhY3tkcH17ZHh9PVxkZnJhY3stNHheMnB9e3heMn0kJA0KJCRcaW50IFxkZnJhY3tkcH17cH09XGludCAtNGR4JCQNCiQkbG4ocCk9LTR4K2MkJA0KJCRwPWNfMWVeey00eH0kJA0KRW50b25jZXMNCiQkXGRmcmFje2R5fXtkeH09Y18xZV57LTR4fSQkDQokJHk9XGludCBjXzFley00eH1keCQkDQokJHlfMih4KT0tXGRmcmFje2NfMX17NH1lXnstNHh9K2NfMiQkDQpgYGB7cn0NCiNuZXh0DQpgYGANCg0KNGMpICR4XjJ5JyczeHknK3k9MCQ7ICR4PjAkOyAkeV8xKHgpPXheey0xfSQNCg0KU2UgcHJvcG9uZSBsYSBzZWd1bmRhIHNvbHVjacOzbg0KJCR5XzI9dih4KXheey0xfSQkDQpEZXJpdmFuZG8NCiQkeSc9did4XnstMX0tdnheey0yfSQkDQokJHknJz12Jyd4XnstMX0tdid4XnstMn0tKHYneF57LTJ9LTJ2eF57LTN9KSQkDQokJHknJz12Jyd4XnstMX0rMnZ4XnstM30kJA0KU3VzdGl0dXlvIGVuIGxhIGVkIG9yaWdpbmFsDQokJHheezJ9KHYnJ3heey0xfSsydnheey0zfSkrM3godid4XnstMX0tdnheey0yfSkrdnheey0xfT0wJCQNCiQkdicneCt2JygzKSt2KDJ4XnstMX0tM3heey0xfSt4XnstMX0pPTAkJA0KJCR2Jyd4KzN2Jz0wJCQNClNlYQ0KJCRwPXYnXHJpZ2h0YXJyb3cgcCc9dicnJCQNClN1c3RpdHV5ZW5kbyB5IHJlc29sdmllbmRvIHBvciBzZXBhcmFjacOzbiBkZSB2YXJpYWJsZXMNCiQkcCd4KzNwPTAkJA0KJCRcZGZyYWN7ZHB9e2R4fT0tM3AkJA0KJCRcZGZyYWN7ZHB9e3B9PXstM2R4fSQkDQokJGxuKHApPS0zeCtjJCQNCiQkcD1jXzFlXnstM3h9JCQNClNvbHVjaW9uYW5kbyBwYXJhICR5XzIkDQokJFxpbnQgZHk9XGludCBjXzFlXnstM3h9ZHgkJA0KJCR5XzI9LVxkZnJhY3tjXzF9ezN9ZV57LTN4fStjXzIkJA0KYGBge3J9DQpzcXJ0KHBpKQ0KYGBgDQoNCjVhKQ0KJCR5JyctMnknLTN5PTNlXnsyeH0kJA0KMS4tRW5jb250cmFyIGxhIHNvbHVjacOzbiBkZSBsYSBlY3VhY2lvbiBob21vZ2VuZWEuDQokJHknJy0yeSctM3k9MCQkDQokJG1eMi0ybS0zPTAkJA0KJCQobS0zKShtKzEpPTAkJA0KJCRtXzE9MyA7IG1fMj0tMSQkDQokJHlfSD1jXzFlXnszeH0rY18yZV57LXh9JCQNCkRhZG8gcXVlICRnKHgpPTNlXnsyeH0kIHNlIHN1Z2llcmUgdW5hIHNvbHVjaW9uIHBhcnRpY3VsYXIgZCBlbGEgZm9ybWENCiQkWV9wPUFlXnsyeH0kJA0KRW50b25jZXMNCiQkWSdfcD0yQWVeezJ4fVxyaWdodGFycm93IFknJ19wPTRBZV57Mnh9JCQNCnBvciBsbyBxdWUgbGEgZWMuIGRpZi4gcXVlZGEgY29tbzoNCiQkNEFlXnsyeH0tMygyQWVeezJ4fSktNEFlXnsyeH09MmVeezJ4fSQkDQokJCg0QS02QS00QSllXnsyeH09M2VeezJ4fSQkDQokJC02QT0zJCQNCg0KJCRBPS1cZGZyYWN7MX17Mn0kJA0KJCRZX3A9LVxkZnJhY3sxfXsyfWVeezJ4fSQkDQokJFk9WV9IK1lfUCQkDQokJFk9Y18xZV57M3h9K2NfMmVeey14fS1cZGZyYWN7MX17Mn1lXnsyeH0kJA0KYGBge3J9DQpzcXJ0KDIpDQpgYGANCjViKQ0KJCR1Jycrd14yXzB1PWNvcyh3eCkkJA0KMS4tIEVuY29udHJhciBsYSBzb2x1Y2lvbiBob21vZ2VuZWEuDQokJHUnJy13XzBeMnU9MCQkDQokJG1eMi13XjJfMD0wJCQNCiQkbV8xPXdfMGk7bV8yPS13XzBpJCQNCiQkdV8xPWNfMWVee3dfMGl4fTt1XzI9Y18yZV57LXdfMGl4fSQkDQpTb2x1Y2lvbiBnZW5lcmFsDQokJHVfSD1jXzFlXnt3XzBpeH0rXGRmcmFje2NfMn17ZV57d18waXh9fSQkDQokJHVfSD1jXzEoY29zKHdfMHgpK2lzZW4od18weCkpK2NfMihjb3Mod18weCktaXNlbih3XzB4KSkkJA0KJCR1X0g9KGNfMStjXzIpY29zKHdfMHgpK2koY18xLWNfMilzZW4od18weCkkJA0KJCR1X0g9Y18xY29zKHdfMHgpK2NfMnNlbih3XzB4KSQkDQoNClNvbHVjaW9uYW5kbyBsYSBlY3VhY2lvbiBwYXJ0aWN1bGFyIHBhcmEgJGcoeCk9Y29zKHd4KSQsIHN1Z3VpZXJlIHF1ZSBsYSBzb2x1Y2lvbiBkZWJlIHNlciBkZSBsYSBmb3JtYQ0KJCR1X1A9QXNlbih3eCkrQmNvcyh3eCkkJA0KJCR1J19QPUF3Y29zKHd4KS1Cd3Nlbih3eClccmlnaHRhcnJvdyB1JydfUD0tQXdeMnNlbih3eCktQndeMmNvcyh3eCkkJA0KU3VzdGl0dXllbmRvIGVuIGxhIGVjLiBkaWYuIG9yaWdpbmFsDQokJC1Bd14yc2VuKHd4KS1Cd14yY29zKHd4KSt3XjJfMChBc2VuKHd4KStCY29zKHd4KSk9Y29zKHd4KSQkDQokJCgtQXdeMitBd14yXzApc2VuKHd4KSsoLUJ3XjIrQndfMF4yKWNvcyh3eCk9Y29zKHd4KSQkDQokJC1Bd14yK0F3XjJfMD0wJCQNCiQkLUJ3XjIrQndfMF4yPTEkJA0KJCRBPTAkJA0KJCRCKC13XjIrd18wXjIpPTEkJA0KJCRCPVxkZnJhY3sxfXstd14yK3dfMF4yfSQkDQoNCiQkdV9QPVxkZnJhY3sxfXstd14yK3dfMF4yfWNvcyh3eCkkJA0KJCR1PVxkZnJhY3sxfXstd14yK3dfMF4yfWNvcyh3eCkrY18xY29zKHdfMHgpK2NfMnNlbih3XzB4KSQkDQpgYGB7cn0NCiMjIyMjIw0KYGBgDQoNCjVjKQ0KJCR5JycreScrNHk9MnNlbmgoeCkkJA0KU29sdWNpb25hciBsYSBwYXJ0ZSBob21vZ2VuZWEuDQokJFxkZnJhY3tkXjJ5fXtkeF4yfStcZGZyYWN7ZHl9e2R4fSs0eT0wJCQNCiQkbV4yK20rND0wJCQNCiQkbT1cZGZyYWN7LTFccG1cc3FydHsxXjItNCgxKSg0KX19ezJ9JCQNCiQkbV8xPS1cZGZyYWN7MX17Mn0rXGRmcmFje2lcc3FydHsxNX19ezJ9IFxyaWdodGFycm93IG1fMj0tXGRmcmFjezF9ezJ9LVxkZnJhY3tpXHNxcnR7MTV9fXsyfSQkDQpFbnRvbmNlcyBsYSBzb2x1Y8OzbiBnZW5lcmFsIGVzdGEgZGFkYSBwb3INCiQkeT1jXzFlXnsoIC1cZGZyYWN7MX17Mn0rXGRmcmFje2lcc3FydHsxNX19ezJ9KXh9K2NfMmVeeygtXGRmcmFjezF9ezJ9LVxkZnJhY3tpXHNxcnR7MTV9fXsyfSl4fSQkDQpEYWRvIGxhIGVjdWFjaW9uIGRlIEV1bGVyICRlXntcYWxwaGErXGJldGEgaX09ZV5cYWxwaGEgY29zKFxiZXRhKStpZV5cYWxwaGEgc2VuKFxiZXRhKSkkDQokJHk9Y18xKGVeey1cZGZyYWN7eH17Mn19Y29zKFxkZnJhY3tcc3FydHsxNX19ezJ9eCkraWVeey1cZGZyYWN7eH17Mn19c2VuKFxkZnJhY3tcc3FydHsxNX19ezJ9eCkpJCQNCiQkK2NfMShlXnstXGRmcmFje3h9ezJ9fWNvcyhcZGZyYWN7XHNxcnR7MTV9fXsyfXgpLWllXnstXGRmcmFje3h9ezJ9fXNlbihcZGZyYWN7XHNxcnR7MTV9fXsyfXgpKSQkDQoNCiQkeV9IPShjXzErY18yKQhlXnstXGRmcmFje3h9ezJ9fWNvcyhcZGZyYWN7XHNxcnR7MTV9fXsyfXgpK2koY18xLWNfMillXnstXGRmcmFje3h9ezJ9fXNlbihcZGZyYWN7XHNxcnR7MTV9fXsyfXgpJCQNCkRldGVybWluYXIgbGEgc29sdWNpw7NuIHBhcnRpY3VsYXIsIGRhZG8gJHNlbmgoeCk9XGRmcmFje2VeeH17Mn0tXGRmcmFje2Veey14fX17Mn0kLCB5YSBxdWUgJGcoeCkkIGVzIHVuYSBzdW1hIGRlIGZ1bmNpb25lcyBlbmNvbnRyYXRlc21vcyBsYXMgZG9zIHNvbHVjaW9uZXMgcGFydGljdWxhcmVzLiBOb3RhbW9zIHF1ZSBzb24gZGUgbGEgZm9ybWEgJGFfMWVeeCQgeSAkYV8yZV57LTF9JCwgYXNpIHF1ZSBsYSBzb2x1Y2lvbiBwYXJ0aWN1bGFyIHNlcmEgZGUgbGEgZm9ybWEgJHlfUD1hXzFlXngrYV8yZV57LXh9JC4gUXVlZGEgZWwgcHJvYmxlbWEgZGUgZW5jb250cmEgJGFfMSxhXzIkDQokJHlfcCc9YV8xZV54LWFfMmVeey14fSQkDQokJHknJ19wPWFfMWVeeCthXzJlXnsteH0kJA0KU3VzdGl0dXllbmRvIGVuIGxhIGVjdWFjaW9uIG9yaWdpbmFsDQokJChhXzFlXngrYV8yZV57LXh9KSsoYV8xZV54LWFfMmVeey14fSkrNChhXzFlXngrYV8yZV57LXh9KT1cZGZyYWN7ZV54fXsyfStcZnJhY3tlXnstMX19ezJ9JCQNCiQkNmFfMWVeeCs0YV8yZV57LXh9PVxkZnJhY3tlXnh9ezJ9LVxmcmFje2Veey14fX17Mn0kJA0KQXNpIHB1ZXMgJGFfMj0tXGRmcmFjezF9ezh9JCB5ICRhXzE9XGRmcmFjezF9ezEyfSQsIHkNCiQkeV9wPVxkZnJhY3tlXnh9ezEyfS1cZnJhY3tlXnsteH19ezh9JCQNCkFob3JhIHNpIHJlbm9tYnJhbW9zICRjXzE9KGNfMStjXzIpJCB5ICRjXzI9aShjXzEtY18yKSQNCiQkeT15X0greV9QJCQNCiQkeT1cZGZyYWN7ZV54fXsxMn0tXGZyYWN7ZV57LXh9fXs4fStjXzEIZV57LVxkZnJhY3t4fXsyfX1jb3MoXGRmcmFje1xzcXJ0ezE1fX17Mn14KStjXzJlXnstXGRmcmFje3h9ezJ9fXNlbihcZGZyYWN7XHNxcnR7MTV9fXsyfXgpJCQNCg0KDQoNCg0K