matrix(c(7, 3, 5, 3, 4, 10), 2)
## [,1] [,2] [,3]
## [1,] 7 5 4
## [2,] 3 3 10
matrix(c(1, -1, 0, 2, 0, 2, 2, 1, 3), 3)
## [,1] [,2] [,3]
## [1,] 1 2 2
## [2,] -1 0 1
## [3,] 0 2 3
matrix(c(7, 3, 5, 3, 4, 10), 2) %*% matrix(c(1, -1, 0, 2, 0, 2, 2, 1, 3), 3)
## [,1] [,2] [,3]
## [1,] 2 22 31
## [2,] 0 26 39
matrix(c(3, 2, 1, 2, 8, 11), 2)
## [,1] [,2] [,3]
## [1,] 3 1 8
## [2,] 2 2 11
matrix(c(1, -1, 0, 2, 0, 2, 2, 1, 3), 3)
## [,1] [,2] [,3]
## [1,] 1 2 2
## [2,] -1 0 1
## [3,] 0 2 3
matrix(c(3, 2, 1, 2, 8, 11), 2) %*% matrix(c(1, -1, 0, 2, 0, 2, 2, 1, 3), 3)
## [,1] [,2] [,3]
## [1,] 2 22 31
## [2,] 0 26 39
det(matrix(c(1, -1, 0, 2, 0, 2, 2, 1, 3), 3))
## [1] 0
\((I+M^{-1})M(M+I)^{-1}=(M+M^{-1}M)(M+I)^{-1}=(M+I)(M+I)^{-1}=I\).
양변 좌측에 \((I+M^{-1})^{-1}\) 을 곱하면,
\((I+M^{-1})^{-1}(I+M^{-1})M(M+I)^{-1}=(I+M^{-1})^{-1}\).
이것을 간단히 하면,
\(M(M+I)^{-1}=(I+M^{-1})^{-1}\).
\(A^{-1}=\begin{bmatrix}-1&-2&5\\-1&-1&3\\-1&-2&4\end{bmatrix}\).
따라서, 연립방정식의 해는
\(\vec{x}=A^{-1}\vec{b}=\begin{bmatrix}-1&-2&5\\-1&-1&3\\-1&-2&4\end{bmatrix}\begin{bmatrix}5\\1\\4\end{bmatrix}=\begin{bmatrix}13\\6\\9\end{bmatrix}\)
source("adjoint.R")
A <- matrix(c(2, 1, 1, -2, 1, 0, -1, -2, -1), 3)
b <- c(5, 1, 4)
minor(A, 1, 1)
## [1] -1
minor(A, 2, 1)
## [1] 2
minor(A, 3, 1)
## [1] 5
minor(A, 1, 2)
## [1] 1
minor(A, 2, 2)
## [1] -1
minor(A, 3, 2)
## [1] -3
minor(A, 1, 3)
## [1] -1
minor(A, 2, 3)
## [1] 2
minor(A, 3, 3)
## [1] 4
cofactor(A, 1, 1)
## [1] -1
cofactor(A, 2, 1)
## [1] -2
cofactor(A, 3, 1)
## [1] 5
cofactor(A, 1, 2)
## [1] -1
cofactor(A, 2, 2)
## [1] -1
cofactor(A, 3, 2)
## [1] 3
cofactor(A, 1, 3)
## [1] -1
cofactor(A, 2, 3)
## [1] -2
cofactor(A, 3, 3)
## [1] 4
adjoint(A)
## [,1] [,2] [,3]
## [1,] -1 -2 5
## [2,] -1 -1 3
## [3,] -1 -2 4
det(A)
## [1] 1
solve(A)
## [,1] [,2] [,3]
## [1,] -1 -2 5
## [2,] -1 -1 3
## [3,] -1 -2 4
solve(A) %*% b
## [,1]
## [1,] 13
## [2,] 6
## [3,] 9
solve(A, b)
## [1] 13 6 9
save.image("chapter_5_class_II.rda")