Natural Selection

M. Drew LaMar
October 31, 2016

Model Design

Selection

Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( w_{11} \) \( w_{12} \) \( w_{22} \)
Frequency\( _{t} \) \( p_{t}^2 \) \( 2p_{t}q_{t} \) \( q_{t}^2 \)
Count\( _{t} \) \( p_{t}^2N_{t} \) \( 2p_{t}q_{t}N_{t} \) \( q_{t}^2N_{t} \)
Count\( _{t+1} \) \( p_{t}^2N_{t}w_{11} \) \( 2p_{t}q_{t}N_{t}w_{12} \) \( q_{t}^2N_{t}w_{22} \)
\[ \begin{align} N_{2,t+1} & = 2p_{t}q_{t}N_{t}w_{12} + 2q_{t}^2N_{t}w_{22} \\ N_{t+1} & = 2\bigl(p_{t}^2N_{t}w_{11} + 2p_{t}q_{t}N_{t}w_{12} + q_{t}^2N_{t}w_{22}\bigr) \end{align} \]

Question: So what is the frequency of allele \( A_{2} \) in generation \( t+1 \)?

Model Design

\[ \begin{align} N_{2,t+1} & = 2p_{t}q_{t}N_{t}w_{12} + 2q_{t}^2N_{t}w_{22} \\ N_{t+1} & = 2\bigl(p_{t}^2N_{t}w_{11} + 2p_{t}q_{t}N_{t}w_{12} + q_{t}^2N_{t}w_{22}\bigr) \end{align} \]

Answer: \[ \begin{align} q_{t+1} & = \frac{N_{2,t+1}}{N_{t+1}} \\ & = \frac{2p_{t}q_{t}N_{t}w_{12} + 2q_{t}^2N_{t}w_{22}}{2\bigl(p_{t}^2N_{t}w_{11} + 2p_{t}q_{t}N_{t}w_{12} + q_{t}^2N_{t}w_{22}\bigr)} \\ & = \frac{p_{t}q_{t}w_{12} + q_{t}^2w_{22}}{p_{t}^2w_{11} + 2p_{t}q_{t}w_{12} + q_{t}^2w_{22}} \end{align} \]

Model Design

Replace \( p_{t} = 1-q_{t} \) to arrive at

\[ q_{t+1} = \frac{(1-q_{t})q_{t}w_{12} + q_{t}^2w_{22}}{(1-q_{t})^2w_{11} + 2(1-q_{t})q_{t}w_{12} + q_{t}^2w_{22}}. \]

Since we are concerned with relative fitness, we have

Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1+f(s,t) \) \( 1+g(s,t) \)

Model Design

We consider 5 common types of selection:

  • Codominance (genic selection):
Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1+s \) \( 1+2s \)
  • Complete dominance (\( A_{2} \) is dominant):
Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1+s \) \( 1+s \)

Model Design

  • Complete recessiveness (\( A_{2} \) is recessive):
Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1 \) \( 1+s \)
  • Overdominance (\( s > 0 \), \( s > t \), heterozygote highest fitness):
Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1+s \) \( 1+t \)
  • Underdominance (\( s < 0 \), \( s < t \), heterozygote lowest fitness):
Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1+s \) \( 1+t \)

Example: Codominance

Codominance (genic selection):

Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1+s \) \( 1+2s \)

\[ \begin{align} q_{t+1} & = \frac{(1-q_{t})q_{t}(1+s) + q_{t}^2(1+2s)}{(1-q_{t})^2 + 2(1-q_{t})q_{t}(1+s) + q_{t}^2(1+2s)} \\ & = F(q_{t},s) \end{align} \]

Example: Codominance

Simulate: \( s = 0.01 \), \( q_{0} = 0.04 \) plot of chunk unnamed-chunk-1

Example: Codominance

Simulate: \( s = 0.01 \), \( q_{0} = 0.04 \)

N <- 3000
s <- 0.01
q <- rep(0.04,N)
for (i in 1:(N-1)) {
  qi <- q[i] # For readability
  q[i+1] <- ((1-qi)*qi*(1+s) + qi*qi*(1+2*s))/((1-qi)*(1-qi) + 2*(1-qi)*qi*(1+s) + qi*qi*(1+2*s))
}
plot(1:N,q)

Directional selection

Codominance (left); Dominant (center); Recessive (right) plot of chunk unnamed-chunk-3

Recessive deleterious alleles

What happens when \( A_{2} \) is recessive and deleterious? Suppose \( s = -0.01 \).

plot of chunk unnamed-chunk-4

The proportion of \( A_{2} \) in the population after 3000 generations is 0.0184496!!! That's only a drop of 54%!

Balancing selection

Definition [Wikipedia]: Balancing selection refers to a number of selective processes by which multiple alleles (different versions of a gene) are actively maintained in the gene pool of a population at frequencies longer than expected from genetic drift alone.

Overdominance (\( s > 0 \), \( s > t \), heterozygote highest fitness):

Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1+s \) \( 1+t \)

Overdominance

Simulate: \( s = 0.04 \), \( t = 0.02 \)

plot of chunk unnamed-chunk-5

Underdominance

Underdominance (\( s < 0 \), \( s < t \), heterozygote lowest fitness):

Genotype \( A_{1}A_{1} \) \( A_{1}A_{2} \) \( A_{2}A_{2} \)
Fitness \( 1 \) \( 1+s \) \( 1+t \)

Simulate: \( s = -0.02 \), \( t = -0.01 \)

plot of chunk unnamed-chunk-6