Problem 1

Using the following data, perform an independent samples t-test. Test a nondirectional hypothesis using \(\alpha=.05\). Report the 95% confidence interval around \((\bar{x}_1 - \bar{x}_2)\). Also compute and interpret the Cohen’s \(d\) effect size. Write up the results in APA format.

\[\begin{equation} \begin{bmatrix} \textbf{Sample1} \\ 51 \\ 59 \\ 33 \\ 48 \\ 48 \\ 55 \end{bmatrix} \begin{bmatrix} \textbf{Sample2} \\ 59 \\ 76 \\ 57 \\ 71 \\ 71 \\ 66 \end{bmatrix} \end{equation}\]

Solution

Preliminaries

\(n_1\) = 6, \(df_1\) = 5.

\(n_2\) = 6, \(df_2\) = 5.

\(df_{total} = 5 + 5 = 10\)

\(\bar{x}_1\) = 49

\(\bar{x}_2\) = 66.67

\(Var_1\):

 Data Mean Dev Sq dev
   51   49   2      4
   59   49  10    100
   33   49 -16    256
   48   49  -1      1
   48   49  -1      1
   55   49   6     36

\(SS_1 = 398\)

\(Var_1 = \frac{398}{6-1} = 79.6\)

\(Var_2\):

 Data  Mean   Dev Sq dev
   59 66.67 -7.67  58.83
   76 66.67  9.33  87.05
   57 66.67 -9.67  93.51
   71 66.67  4.33  18.75
   71 66.67  4.33  18.75
   66 66.67 -0.67   0.45

\(SS_2 = 277.34\)

\(Var_2 = \frac{277.34} {6-1} = 55.47\)

Hypothesis Test

\(Var_{pooled} = \left(\frac{5}{5 + 5}\right) 79.6+ \left(\frac{5}{5 + 5}\right) 55.47= 67.53\)

\(Var_{sampling} = \frac{67.53}{6}+\frac{67.53}{6}=22.52\)

\(StdErr = \sqrt{22.52} = 4.75\)

\(t = \frac{\left(49 - 66.67\right)}{4.75} = -3.72\)

\(t_{critical} = \pm 2.228\)

\(\fbox{ Decision: reject the null }\)

Estimated effect size

Raw effect size \((\bar{x}_1-\bar{x}_2)\) = (49 - 66.67) = -17.67

Cohen’s d = \(\frac{\left(49 - 66.67\right)}{\sqrt{67.53}} = -2.15\)

Confidence interval

CI: \(-17.67 \pm (4.75)(2.228) = \left[ -28.25, -7.09\right]\)

APA writeup

t(10)=-3.72, p <0.05, d=-2.15.

Problem 2

Using the following data, perform an independent samples t-test. Test a directional hypothesis (grp1 > grp2) using \(\alpha=.05\). Report the 95% confidence interval around \((\bar{x}_1 - \bar{x}_2)\). Also compute and interpret the Cohen’s \(d\) effect size. Write up the results in APA format.

\[\begin{equation} \begin{bmatrix} \textbf{Sample1} \\ 95 \\ 101 \\ 122 \\ 108 \\ 107 \end{bmatrix} \begin{bmatrix} \textbf{Sample2} \\ 86 \\ 90 \\ 73 \\ 81 \\ 106 \end{bmatrix} \end{equation}\]

Solution

Preliminaries

\(n_1\) = 5, \(df_1\) = 4.

\(n_2\) = 5, \(df_2\) = 4.

\(df_{total} = 4 + 4 = 8\)

\(\bar{x}_1\) = 106.6

\(\bar{x}_2\) = 87.2

\(Var_1\):

 Data  Mean   Dev Sq dev
   95 106.6 -11.6 134.56
  101 106.6  -5.6  31.36
  122 106.6  15.4 237.16
  108 106.6   1.4   1.96
  107 106.6   0.4   0.16

\(SS_1 = 405.2\)

\(Var_1 = \frac{405.2}{5-1} = 101.3\)

\(Var_2\):

 Data Mean   Dev Sq dev
   86 87.2  -1.2   1.44
   90 87.2   2.8   7.84
   73 87.2 -14.2 201.64
   81 87.2  -6.2  38.44
  106 87.2  18.8 353.44

\(SS_2 = 602.8\)

\(Var_2 = \frac{602.8} {5-1} = 150.7\)

Hypothesis Test

\(Var_{pooled} = \left(\frac{4}{4 + 4}\right) 101.3+ \left(\frac{4}{4 + 4}\right) 150.7= 126\)

\(Var_{sampling} = \frac{126}{5}+\frac{126}{5}=50.4\)

\(StdErr = \sqrt{50.4} = 7.1\)

\(t = \frac{\left(106.6 - 87.2\right)}{7.1} = 2.73\)

\(t_{critical} = +1.86\)

\(\fbox{ Decision: reject the null }\)

Estimated effect size

Raw effect size \((\bar{x}_1-\bar{x}_2)\) = (106.6 - 87.2) = 19.4

Cohen’s d = \(\frac{\left(106.6 - 87.2\right)}{\sqrt{126}} = 1.73\)

Confidence interval

CI: \(19.4 \pm (7.1)(1.86) = \left[ 6.19, 32.61\right]\)

APA writeup

t(8)=2.73, p <0.05, d=1.73.

Problem 3

Redo problem 2 using a two-tailed test with \(\alpha=.01\) and a 99% confidence interval.

Solution

All values carry over from problem 2 except for \(t_{critical}\), the statistical decision, and the confidence interval.

Hypothesis Test

\(t_{critical} = \pm 3.355\)

\(\fbox{ Decision: fail to reject the null }\)

Confidence interval

CI: \(19.4 \pm (7.1)(3.355) = \left[ -4.42, 43.22\right]\)

APA writeup

t(8)=2.73, p >=0.01, d=1.73.

Problem 4

Using the following data, perform an independent samples t-test. Test a nondirectional hypothesis using \(\alpha=.01\). Report the 99% confidence interval around \((\bar{x}_1 - \bar{x}_2)\). Also compute and interpret the Cohen’s \(d\) effect size. Write up the results in APA format.

\[\begin{equation} \begin{bmatrix} \textbf{Sample1} \\ -0.26 \\ -0.86 \\ -1.17 \\ 0.17 \\ -0.44 \end{bmatrix} \begin{bmatrix} \textbf{Sample2} \\ 0.82 \\ 0.06 \\ 1.05 \\ -1.17 \\ 2.49 \end{bmatrix} \end{equation}\]

Solution

Preliminaries

\(n_1\) = 5, \(df_1\) = 4.

\(n_2\) = 5, \(df_2\) = 4.

\(df_{total} = 4 + 4 = 8\)

\(\bar{x}_1\) = -0.51

\(\bar{x}_2\) = 0.65

\(Var_1\):

  Data  Mean   Dev Sq dev
 -0.26 -0.51  0.25   0.06
 -0.86 -0.51 -0.35   0.12
 -1.17 -0.51 -0.66   0.44
  0.17 -0.51  0.68   0.46
 -0.44 -0.51  0.07   0.00

\(SS_1 = 1.08\)

\(Var_1 = \frac{1.08}{5-1} = 0.27\)

\(Var_2\):

  Data Mean   Dev Sq dev
  0.82 0.65  0.17   0.03
  0.06 0.65 -0.59   0.35
  1.05 0.65  0.40   0.16
 -1.17 0.65 -1.82   3.31
  2.49 0.65  1.84   3.39

\(SS_2 = 7.24\)

\(Var_2 = \frac{7.24} {5-1} = 1.81\)

Hypothesis Test

\(Var_{pooled} = \left(\frac{4}{4 + 4}\right) 0.27+ \left(\frac{4}{4 + 4}\right) 1.81= 1.04\)

\(Var_{sampling} = \frac{1.04}{5}+\frac{1.04}{5}=0.42\)

\(StdErr = \sqrt{0.42} = 0.65\)

\(t = \frac{\left(-0.51 - 0.65\right)}{0.65} = -1.78\)

\(t_{critical} = \pm 3.355\)

\(\fbox{ Decision: fail to reject the null }\)

Estimated effect size

Raw effect size \((\bar{x}_1-\bar{x}_2)\) = (-0.51 - 0.65) = -1.16

Cohen’s d = \(\frac{\left(-0.51 - 0.65\right)}{\sqrt{1.04}} = -1.14\)

Confidence interval

CI: \(-1.16 \pm (0.65)(3.355) = \left[ -3.34, 1.02\right]\)

APA writeup

t(8)=-1.78, p >=0.01, d=-1.14.