library(extRemes)
## Loading required package: Lmoments
## Loading required package: distillery
## Loading required package: car
##
## Attaching package: 'extRemes'
## The following objects are masked from 'package:stats':
##
## qqnorm, qqplot
library(fitdistrplus)
## Loading required package: MASS
## Loading required package: survival
data("Potomac")
head(Potomac)
## Year Flow
## 1 1895 68500
## 2 1896 56000
## 3 1897 204000
## 4 1898 127000
## 5 1899 128000
## 6 1900 57700
dane <- Potomac$Flow
dopasuj <- function(dane){
model_GEV <- fevd(dane/10000, type="GEV" )
tmp <- summary(model_GEV); tmp$AIC
tmp <- as.numeric(tmp$AIC)
model_Weibull <- fitdist(dane/10000, "weibull", method = "mle")
model_Lnorm <- fitdist(dane/10000, "lnorm", method = "mle")
model_Gamma <- fitdist(dane/10000, "gamma")
c(model_Weibull$aic, model_Lnorm$aic, model_Gamma$aic, tmp)
}
wynik <- dopasuj(dane = dane)
##
## fevd(x = dane/10000, type = "GEV")
##
## [1] "Estimation Method used: MLE"
##
##
## Negative Log-Likelihood Value: 332.1375
##
##
## Estimated parameters:
## location scale shape
## 8.7535770 4.2499288 0.1907679
##
## Standard Error Estimates:
## location scale shape
## 0.46576676 0.36589034 0.07607097
##
## Estimated parameter covariance matrix.
## location scale shape
## location 0.21693867 0.094262079 -0.010576700
## scale 0.09426208 0.133875740 -0.001594657
## shape -0.01057670 -0.001594657 0.005786793
##
## AIC = 670.2751
##
## BIC = 678.2654
macierz <- data.frame(a=dane, b=dane)
wynik <- apply(X = macierz, MARGIN = 2, FUN = dopasuj)
##
## fevd(x = dane/10000, type = "GEV")
##
## [1] "Estimation Method used: MLE"
##
##
## Negative Log-Likelihood Value: 332.1375
##
##
## Estimated parameters:
## location scale shape
## 8.7535770 4.2499288 0.1907679
##
## Standard Error Estimates:
## location scale shape
## 0.46576676 0.36589034 0.07607097
##
## Estimated parameter covariance matrix.
## location scale shape
## location 0.21693867 0.094262079 -0.010576700
## scale 0.09426208 0.133875740 -0.001594657
## shape -0.01057670 -0.001594657 0.005786793
##
## AIC = 670.2751
##
## BIC = 678.2654
##
## fevd(x = dane/10000, type = "GEV")
##
## [1] "Estimation Method used: MLE"
##
##
## Negative Log-Likelihood Value: 332.1375
##
##
## Estimated parameters:
## location scale shape
## 8.7535770 4.2499288 0.1907679
##
## Standard Error Estimates:
## location scale shape
## 0.46576676 0.36589034 0.07607097
##
## Estimated parameter covariance matrix.
## location scale shape
## location 0.21693867 0.094262079 -0.010576700
## scale 0.09426208 0.133875740 -0.001594657
## shape -0.01057670 -0.001594657 0.005786793
##
## AIC = 670.2751
##
## BIC = 678.2654
# library(readxl)
# read_excel(path = , sheet = ,)