This is a report presenting the anaysis of the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database with respect to population health and economic consequences. The data analysed is from 1950 to November 2011. The report contains the analysis and the corresponding codes used to perform the analysis. The data was processed and analysed using various r packages. The storm data contains 902297 observations of 37 variables. With 5633 deaths Tornado causes the most fatalities among all the weather events followed by excessive heat and flash floods with 1903 and 978 deaths respectively. In causing injuries, not surprisingly Tornado causes the most injuries with 91346 reported cases and is followed by TSTM WIND and FLOOD with 6957 and 6789 reported cases respectively. In terms of economic damages including property and crop damages the most devastating event is Floods, causing damages amounting $144.6 billion totally.
filename<-"repdata_data_StormData.csv"
if (!file.exists(filename)){
fileURL<- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(fileURL, filename)
}
stormdata<-read.csv(bzfile("repdata_data_StormData.csv.bz2"), sep=",", header = TRUE)
str(stormdata)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
names(stormdata)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
subStormdat <- stormdata[ , c('EVTYPE', 'FATALITIES', 'INJURIES', 'PROPDMG', 'PROPDMGEXP',
'CROPDMG', 'CROPDMGEXP')]
head(subStormdat)
## EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 1 TORNADO 0 15 25.0 K 0
## 2 TORNADO 0 0 2.5 K 0
## 3 TORNADO 0 2 25.0 K 0
## 4 TORNADO 0 2 2.5 K 0
## 5 TORNADO 0 2 2.5 K 0
## 6 TORNADO 0 6 2.5 K 0
fatalitys <- aggregate(FATALITIES ~ EVTYPE, data = subStormdat, sum)
fatalitys <- fatalitys[fatalitys$FATALITIES > 0, ]
fatalitys <- fatalitys[order(fatalitys$FATALITIES, decreasing = TRUE), ][1:10, ]
head(fatalitys)
## EVTYPE FATALITIES
## 834 TORNADO 5633
## 130 EXCESSIVE HEAT 1903
## 153 FLASH FLOOD 978
## 275 HEAT 937
## 464 LIGHTNING 816
## 856 TSTM WIND 504
injurys <- aggregate(INJURIES ~ EVTYPE, data = subStormdat, sum)
injurys <- injurys[injurys$INJURIES > 0, ]
injurys <- injurys[order(injurys$INJURIES, decreasing = TRUE), ][1:10, ]
head(injurys)
## EVTYPE INJURIES
## 834 TORNADO 91346
## 856 TSTM WIND 6957
## 170 FLOOD 6789
## 130 EXCESSIVE HEAT 6525
## 464 LIGHTNING 5230
## 275 HEAT 2100
unique(subStormdat$PROPDMGEXP)
## [1] K M B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels: - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
By studying the above output of the individual factor levels and the codebook, it’s clear that (i) variable has both upper- and lower case letters and (ii) that K equals to thousands, M equals to millions, and B equals to billions. To achieve the analysis, we need to get the real values back by converting back the exponential values
subStormdat[subStormdat$PROPDMGEXP == "K", ]$PROPDMG <- subStormdat[subStormdat$PROPDMGEXP == "K", ]$PROPDMG * 1000
subStormdat[subStormdat$PROPDMGEXP == "M", ]$PROPDMG <- subStormdat[subStormdat$PROPDMGEXP == "M", ]$PROPDMG * 1e+06
subStormdat[subStormdat$PROPDMGEXP == "m", ]$PROPDMG <- subStormdat[subStormdat$PROPDMGEXP == "m", ]$PROPDMG * 1e+06
subStormdat[subStormdat$PROPDMGEXP == "B", ]$PROPDMG <- subStormdat[subStormdat$PROPDMGEXP == "B", ]$PROPDMG * 1e+09
propDmg<- aggregate(PROPDMG ~ EVTYPE, subStormdat, sum)
propDmg <- propDmg[propDmg$PROPDMG > 0,]
propDmg <- propDmg[order(propDmg$PROPDMG, decreasing = TRUE),][1:10,]
head(propDmg)
## EVTYPE PROPDMG
## 170 FLOOD 144657709807
## 411 HURRICANE/TYPHOON 69305840000
## 834 TORNADO 56937160779
## 670 STORM SURGE 43323536000
## 153 FLASH FLOOD 16140812067
## 244 HAIL 15732267048
unique(subStormdat$CROPDMGEXP)
## [1] M K m B ? 0 k 2
## Levels: ? 0 2 B k K m M
subStormdat[subStormdat$CROPDMGEXP == "K", ]$CROPDMG <- subStormdat[subStormdat$CROPDMGEXP == "K", ]$CROPDMG * 1000
subStormdat[subStormdat$CROPDMGEXP == "k", ]$CROPDMG <- subStormdat[subStormdat$CROPDMGEXP == "k", ]$CROPDMG * 1000
subStormdat[subStormdat$CROPDMGEXP == "M", ]$CROPDMG <- subStormdat[subStormdat$CROPDMGEXP == "M", ]$CROPDMG * 1e+06
subStormdat[subStormdat$CROPDMGEXP == "m", ]$CROPDMG <- subStormdat[subStormdat$CROPDMGEXP == "m", ]$CROPDMG * 1e+06
subStormdat[subStormdat$CROPDMGEXP == "B", ]$CROPDMG <- subStormdat[subStormdat$CROPDMGEXP == "B", ]$CROPDMG * 1e+09
cropDmg <- aggregate(CROPDMG ~ EVTYPE, subStormdat, sum)
cropDmg <- cropDmg[cropDmg$CROPDMG > 0,]
cropDmg <- cropDmg[order(cropDmg$CROPDMG, decreasing = TRUE),][1:10,]
head(cropDmg)
## EVTYPE CROPDMG
## 95 DROUGHT 13972566000
## 170 FLOOD 5661968450
## 590 RIVER FLOOD 5029459000
## 427 ICE STORM 5022113500
## 244 HAIL 3025954473
## 402 HURRICANE 2741910000
totalDmg <- merge(propDmg, cropDmg, by = "EVTYPE")
totalDmg$total <- totalDmg$PROPDMG + totalDmg$CROPDMG
totalDmg <- totalDmg[order(totalDmg$total, decreasing = TRUE),][1:5,]
head(totalDmg)
## EVTYPE PROPDMG CROPDMG total
## 2 FLOOD 144657709807 5661968450 150319678257
## 5 HURRICANE/TYPHOON 69305840000 2607872800 71913712800
## 3 HAIL 15732267048 3025954473 18758221521
## 1 FLASH FLOOD 16140812067 1421317100 17562129167
## 4 HURRICANE 11868319010 2741910000 14610229010
Further analysis involves plotting the exploratory graphs to reveal the answers to the questions asked in the assignment: 1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health? 2.Across the United States, which types of events have the greatest economic consequences?
# Plotting the Number of Fatalities By the Most Harmful Event Types
fatalitys$EVTYPE <- factor(fatalitys$EVTYPE, levels = fatalitys$EVTYPE)
gfat<-ggplot(head(fatalitys, 10), aes(reorder(EVTYPE, FATALITIES), FATALITIES)) +
geom_bar(stat = "identity", fill = rainbow(n=length(fatalitys$FATALITIES))) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + coord_flip()+
xlab("EVENT TYPE") + ylab("FATALITIES") +
ggtitle("Fatalities by event type across the US")
injurys$EVTYPE <- factor(injurys$EVTYPE, levels = injurys$EVTYPE)
ginj<-ggplot(head(injurys, 10), aes(reorder(EVTYPE, INJURIES), INJURIES)) +
geom_bar(stat = "identity", fill = rainbow(n=length(injurys$INJURIES))) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + coord_flip()+
xlab("EVENT TYPE") + ylab("INJURIES") +
ggtitle("Injuries by event type across the US")
grid.arrange(gfat, ginj, nrow = 2)
grid.text("Fig 1 : Plot of top ten harmful events leading to most fatalaties and injuries in the US", x = unit(0.5, "npc"), y = unit(0, "npc"),vjust = -0.10, gp = gpar(cex=0.80))
intersect(fatalitys[1:10, 1], injurys[1:10, 1])
## [1] "TORNADO" "EXCESSIVE HEAT" "FLASH FLOOD" "HEAT"
## [5] "LIGHTNING" "TSTM WIND" "FLOOD"
Analysis reveals that “TORNADO” is the most harmful event in both variables across the US
propDmg$EVTYPE <- factor(propDmg$EVTYPE, levels = propDmg$EVTYPE)
gprop<-ggplot(head(propDmg, 10), aes(reorder(EVTYPE, PROPDMG), PROPDMG)) +
geom_bar(stat = "identity", fill = rainbow(n=length(propDmg$PROPDMG))) + coord_flip()+
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
xlab("Event Type") + ylab("Property Damages (US$)") +
ggtitle("Damages to Property by Weather Events across the US")
cropDmg$EVTYPE <- factor(cropDmg$EVTYPE, levels = cropDmg$EVTYPE)
gcrop<-ggplot(head(cropDmg, 10), aes(reorder(EVTYPE, CROPDMG), CROPDMG)) +
geom_bar(stat = "identity", fill = rainbow(n=length(cropDmg$CROPDMG))) + coord_flip()+
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
xlab("Event Type") + ylab("Crop Damages (US$)") +
ggtitle("Damages to Crop by Weather Events across the US")
grid.arrange(gprop, gcrop, nrow = 2)
grid.text("Fig 2 : Plot of top ten harmful events leading to property & crop damages in the US", x = unit(0.5, "npc"), y = unit(0, "npc"),vjust = -0.10, gp = gpar(cex=0.80))
intersect(propDmg[1:10, 1], cropDmg[1:10, 1])
## [1] "FLOOD" "HURRICANE/TYPHOON" "FLASH FLOOD"
## [4] "HAIL" "HURRICANE"
Analysis reveals that “FLOOD” is the most economically damaging weather event across the US
totalDmg$EVTYPE <- factor(totalDmg$EVTYPE, levels = totalDmg$EVTYPE)
ggplot(head(totalDmg, 10), aes(reorder(EVTYPE, total), total)) +
geom_bar(stat = "identity", fill = rainbow(n= length(totalDmg$total)))+ coord_flip()+
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
xlab("EVENT TYPE") + ylab("DAMAGES (US$)") +
ggtitle("Total Damages to Property & Crop by Weather Events across the US")