Descripción del laboratorio

Los sistemas de renta de bicycletas se basan en kioskos que son puestos en diferentes áreas de una ciudad. En estos kioskos las personas pueden suscribirse, rentar y devolver las bicicletas. Esto permite que el usurio rente un bicicleta y la pueda devolver en otro lado. Actualmente hay mas de 500 de estos proyectos alrededor del mundo. Estos kioskos se vuelven sensores del flujo de personas dentro de ciudades.

http://www.academatica.com/econometria1/hour.csv

Configuración del entorno

setwd("/Users/Mrm/Developer/R/Econometria I/Class 2")
bike_df <- read.csv("laboratorio1/hour.csv" , stringsAsFactors = FALSE , strip.white = TRUE , header = TRUE )
str(bike_df)
## 'data.frame':    17379 obs. of  17 variables:
##  $ instant   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ dteday    : chr  "2011-01-01" "2011-01-01" "2011-01-01" "2011-01-01" ...
##  $ season    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ yr        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ hr        : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ holiday   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ weekday   : int  6 6 6 6 6 6 6 6 6 6 ...
##  $ workingday: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ weathersit: int  1 1 1 1 1 2 1 1 1 1 ...
##  $ temp      : num  0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
##  $ atemp     : num  0.288 0.273 0.273 0.288 0.288 ...
##  $ hum       : num  0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...
##  $ windspeed : num  0 0 0 0 0 0.0896 0 0 0 0 ...
##  $ casual    : int  3 8 5 3 0 0 2 1 1 8 ...
##  $ registered: int  13 32 27 10 1 1 0 2 7 6 ...
##  $ cnt       : int  16 40 32 13 1 1 2 3 8 14 ...

1. ¿Que mes es el que tiene la mayor demanda?

  demanda_max_mes_1 <- sum(bike_df[bike_df$mnth == 1 , ]$cnt)
  demanda_max_mes_2 <- sum(bike_df[bike_df$mnth == 2 , ]$cnt)
  demanda_max_mes_3 <- sum(bike_df[bike_df$mnth == 3 , ]$cnt)
  demanda_max_mes_4 <- sum(bike_df[bike_df$mnth == 4 , ]$cnt)
  demanda_max_mes_5 <- sum(bike_df[bike_df$mnth == 5 , ]$cnt)
  demanda_max_mes_6 <- sum(bike_df[bike_df$mnth == 6 , ]$cnt)
  demanda_max_mes_7 <- sum(bike_df[bike_df$mnth == 7 , ]$cnt)
  demanda_max_mes_8 <- sum(bike_df[bike_df$mnth == 8 , ]$cnt)
  demanda_max_mes_9 <- sum(bike_df[bike_df$mnth == 9 , ]$cnt)
  demanda_max_mes_10 <- sum(bike_df[bike_df$mnth == 10 , ]$cnt)
  demanda_max_mes_11 <- sum(bike_df[bike_df$mnth == 11 , ]$cnt)
  demanda_max_mes_12 <- sum(bike_df[bike_df$mnth == 12 , ]$cnt)
demanda_max_mes_1
## [1] 134933
  demanda_max_mes_2
## [1] 151352
  demanda_max_mes_3
## [1] 228920
  demanda_max_mes_4
## [1] 269094
  demanda_max_mes_5
## [1] 331686
  demanda_max_mes_6
## [1] 346342
  demanda_max_mes_7
## [1] 344948
  demanda_max_mes_8
## [1] 351194
  demanda_max_mes_9
## [1] 345991
  demanda_max_mes_10
## [1] 322352
  demanda_max_mes_11
## [1] 254831
  demanda_max_mes_12
## [1] 211036

Respuesta : El mes 8 (Agosto)

2. ¿Que rango de hora es la de mayor demanda?

  demanda_max_hora_0 <- sum(bike_df[bike_df$hr == 0 , ]$cnt)
  demanda_max_hora_1 <- sum(bike_df[bike_df$hr == 1 , ]$cnt)
  demanda_max_hora_2 <- sum(bike_df[bike_df$hr == 2 , ]$cnt)
  demanda_max_hora_3 <- sum(bike_df[bike_df$hr == 3 , ]$cnt)
  demanda_max_hora_4 <- sum(bike_df[bike_df$hr == 4 , ]$cnt)
  demanda_max_hora_5 <- sum(bike_df[bike_df$hr == 5 , ]$cnt)
  demanda_max_hora_6 <- sum(bike_df[bike_df$hr == 6 , ]$cnt)
  demanda_max_hora_7 <- sum(bike_df[bike_df$hr == 7 , ]$cnt)
  demanda_max_hora_8 <- sum(bike_df[bike_df$hr == 8 , ]$cnt)
  demanda_max_hora_9 <- sum(bike_df[bike_df$hr == 9 , ]$cnt)
  demanda_max_hora_10 <- sum(bike_df[bike_df$hr == 10 , ]$cnt)
  demanda_max_hora_11 <- sum(bike_df[bike_df$hr == 11 , ]$cnt)
  demanda_max_hora_12 <- sum(bike_df[bike_df$hr == 12 , ]$cnt)
  demanda_max_hora_13 <- sum(bike_df[bike_df$hr == 13 , ]$cnt)
  demanda_max_hora_14 <- sum(bike_df[bike_df$hr == 14 , ]$cnt)
  demanda_max_hora_15 <- sum(bike_df[bike_df$hr == 15 , ]$cnt)
  demanda_max_hora_16 <- sum(bike_df[bike_df$hr == 16 , ]$cnt)
  demanda_max_hora_17 <- sum(bike_df[bike_df$hr == 17 , ]$cnt)
  demanda_max_hora_18 <- sum(bike_df[bike_df$hr == 18 , ]$cnt)
  demanda_max_hora_19 <- sum(bike_df[bike_df$hr == 19 , ]$cnt)
  demanda_max_hora_20 <- sum(bike_df[bike_df$hr == 20 , ]$cnt)
  demanda_max_hora_21 <- sum(bike_df[bike_df$hr == 21 , ]$cnt)
  demanda_max_hora_22 <- sum(bike_df[bike_df$hr == 22 , ]$cnt)
  demanda_max_hora_23 <- sum(bike_df[bike_df$hr == 23 , ]$cnt)
  demanda_max_hora_0
## [1] 39130
  demanda_max_hora_1
## [1] 24164
  demanda_max_hora_2
## [1] 16352
  demanda_max_hora_3
## [1] 8174
  demanda_max_hora_4
## [1] 4428
  demanda_max_hora_5
## [1] 14261
  demanda_max_hora_6
## [1] 55132
  demanda_max_hora_7
## [1] 154171
  demanda_max_hora_8
## [1] 261001
  demanda_max_hora_9
## [1] 159438
  demanda_max_hora_10
## [1] 126257
  demanda_max_hora_11
## [1] 151320
  demanda_max_hora_12
## [1] 184414
  demanda_max_hora_13
## [1] 184919
  demanda_max_hora_14
## [1] 175652
  demanda_max_hora_15
## [1] 183149
  demanda_max_hora_16
## [1] 227748
  demanda_max_hora_17
## [1] 336860
  demanda_max_hora_18
## [1] 309772
  demanda_max_hora_19
## [1] 226789
  demanda_max_hora_20
## [1] 164550
  demanda_max_hora_21
## [1] 125445
  demanda_max_hora_22
## [1] 95612
  demanda_max_hora_23
## [1] 63941

Respuesta: El rango de hora es 17:00 a 17:59 horas

3. ¿Que temporada es la mas alta?

  demanda_temporatura_1 <- max(bike_df[bike_df$season == 1,]$cnt)
  demanda_temporatura_2 <- max(bike_df[bike_df$season == 2,]$cnt)
  demanda_temporatura_3 <- max(bike_df[bike_df$season == 3,]$cnt)
  demanda_temporatura_4 <- max(bike_df[bike_df$season == 4,]$cnt)
  demanda_temporatura_1
## [1] 801
  demanda_temporatura_2
## [1] 957
  demanda_temporatura_3
## [1] 977
  demanda_temporatura_4
## [1] 967

Respuesta: La temporada numero 3 fall

4. ¿A que temperatura baja la demanda?

  demanda_temp_0.02 <- sum(bike_df[ bike_df$temp == 0.02 ,  ]$cnt)
  demanda_temp_0.04 <- sum(bike_df[ bike_df$temp == 0.04 ,  ]$cnt)
  demanda_temp_0.06 <- sum(bike_df[ bike_df$temp == 0.06 ,  ]$cnt)
  demanda_temp_0.08 <- sum(bike_df[ bike_df$temp == 0.08 ,  ]$cnt)
  demanda_temp_0.10 <- sum(bike_df[ bike_df$temp == 0.10 ,  ]$cnt)
  
  demanda_temp_0.12 <- sum(bike_df[ bike_df$temp == 0.12 ,  ]$cnt)
  demanda_temp_0.14 <- sum(bike_df[ bike_df$temp == 0.14 ,  ]$cnt)
  demanda_temp_0.16 <- sum(bike_df[ bike_df$temp == 0.16 ,  ]$cnt)
  demanda_temp_0.18 <- sum(bike_df[ bike_df$temp == 0.18 ,  ]$cnt)
  demanda_temp_0.20 <- sum(bike_df[ bike_df$temp == 0.20 ,  ]$cnt)
  
  demanda_temp_0.22 <- sum(bike_df[ bike_df$temp == 0.22 ,  ]$cnt)
  demanda_temp_0.24 <- sum(bike_df[ bike_df$temp == 0.24 ,  ]$cnt)
  demanda_temp_0.26 <- sum(bike_df[ bike_df$temp == 0.26 ,  ]$cnt)
  demanda_temp_0.28 <- sum(bike_df[ bike_df$temp == 0.28 ,  ]$cnt)
  demanda_temp_0.30 <- sum(bike_df[ bike_df$temp == 0.30 ,  ]$cnt)
  
  demanda_temp_0.32 <- sum(bike_df[ bike_df$temp == 0.32 ,  ]$cnt)
  demanda_temp_0.34 <- sum(bike_df[ bike_df$temp == 0.34 ,  ]$cnt)
  demanda_temp_0.36 <- sum(bike_df[ bike_df$temp == 0.36 ,  ]$cnt)
  demanda_temp_0.38 <- sum(bike_df[ bike_df$temp == 0.38 ,  ]$cnt)
  demanda_temp_0.40 <- sum(bike_df[ bike_df$temp == 0.40 ,  ]$cnt)
  
  demanda_temp_0.42 <- sum(bike_df[ bike_df$temp == 0.42 ,  ]$cnt)
  demanda_temp_0.44 <- sum(bike_df[ bike_df$temp == 0.44 ,  ]$cnt)
  demanda_temp_0.46 <- sum(bike_df[ bike_df$temp == 0.46 ,  ]$cnt)
  demanda_temp_0.48 <- sum(bike_df[ bike_df$temp == 0.48 ,  ]$cnt)
  demanda_temp_0.50 <- sum(bike_df[ bike_df$temp == 0.50 ,  ]$cnt)
  
  demanda_temp_0.52 <- sum(bike_df[ bike_df$temp == 0.52 ,  ]$cnt)
  demanda_temp_0.54 <- sum(bike_df[ bike_df$temp == 0.54 ,  ]$cnt)
  demanda_temp_0.56 <- sum(bike_df[ bike_df$temp == 0.56 ,  ]$cnt)
  demanda_temp_0.58 <- sum(bike_df[ bike_df$temp == 0.58 ,  ]$cnt)
  demanda_temp_0.60 <- sum(bike_df[ bike_df$temp == 0.60 ,  ]$cnt)
   
  demanda_temp_0.62 <- sum(bike_df[ bike_df$temp == 0.62 ,  ]$cnt)
  demanda_temp_0.64 <- sum(bike_df[ bike_df$temp == 0.64 ,  ]$cnt)
  demanda_temp_0.66 <- sum(bike_df[ bike_df$temp == 0.66 ,  ]$cnt)
  demanda_temp_0.68 <- sum(bike_df[ bike_df$temp == 0.68 ,  ]$cnt)
  demanda_temp_0.70 <- sum(bike_df[ bike_df$temp == 0.70 ,  ]$cnt)
  
  demanda_temp_0.72 <- sum(bike_df[ bike_df$temp == 0.72 ,  ]$cnt)
  demanda_temp_0.74 <- sum(bike_df[ bike_df$temp == 0.74 ,  ]$cnt)
  demanda_temp_0.76 <- sum(bike_df[ bike_df$temp == 0.76 ,  ]$cnt)
  demanda_temp_0.78 <- sum(bike_df[ bike_df$temp == 0.78 ,  ]$cnt)
  demanda_temp_0.80 <- sum(bike_df[ bike_df$temp == 0.80 ,  ]$cnt)
  
  demanda_temp_0.82 <- sum(bike_df[ bike_df$temp == 0.82 ,  ]$cnt)
  demanda_temp_0.84 <- sum(bike_df[ bike_df$temp == 0.84 ,  ]$cnt)
  demanda_temp_0.86 <- sum(bike_df[ bike_df$temp == 0.86 ,  ]$cnt)
  demanda_temp_0.88 <- sum(bike_df[ bike_df$temp == 0.88 ,  ]$cnt)
  demanda_temp_0.90 <- sum(bike_df[ bike_df$temp == 0.90 ,  ]$cnt)
  
  demanda_temp_0.92 <- sum(bike_df[ bike_df$temp == 0.92 ,  ]$cnt)
  demanda_temp_0.94 <- sum(bike_df[ bike_df$temp == 0.94 ,  ]$cnt)
  demanda_temp_0.96 <- sum(bike_df[ bike_df$temp == 0.96 ,  ]$cnt)
  demanda_temp_0.98 <- sum(bike_df[ bike_df$temp == 0.98 ,  ]$cnt)
  demanda_temp_1 <- sum(bike_df[ bike_df$temp == 1 ,  ]$cnt)
  demanda_temp_0.02
## [1] 712
  demanda_temp_0.04
## [1] 570
  demanda_temp_0.06
## [1] 672
  demanda_temp_0.08
## [1] 480
  demanda_temp_0.10
## [1] 2514
  demanda_temp_0.12
## [1] 4440
  demanda_temp_0.14
## [1] 7605
  demanda_temp_0.16
## [1] 15083
  demanda_temp_0.18
## [1] 9318
  demanda_temp_0.20
## [1] 28230
  demanda_temp_0.22
## [1] 29434
  demanda_temp_0.24
## [1] 41843
  demanda_temp_0.26
## [1] 49170
  demanda_temp_0.28
## [1] 32132
  demanda_temp_0.30
## [1] 74303
  demanda_temp_0.32
## [1] 82015
  demanda_temp_0.34
## [1] 87274
  demanda_temp_0.36
## [1] 99202
  demanda_temp_0.38
## [1] 61087
  demanda_temp_0.40
## [1] 102809
  demanda_temp_0.42
## [1] 96087
  demanda_temp_0.44
## [1] 80566
  demanda_temp_0.46
## [1] 91065
  demanda_temp_0.48
## [1] 54845
  demanda_temp_0.50
## [1] 105366
  demanda_temp_0.52
## [1] 112850
  demanda_temp_0.54
## [1] 113962
  demanda_temp_0.56
## [1] 123756
  demanda_temp_0.58
## [1] 67730
  demanda_temp_0.60
## [1] 149905
  demanda_temp_0.62
## [1] 148185
  demanda_temp_0.64
## [1] 154985
  demanda_temp_0.66
## [1] 156204
  demanda_temp_0.68
## [1] 73129
  demanda_temp_0.70
## [1] 177298
  demanda_temp_0.72
## [1] 163449
  demanda_temp_0.74
## [1] 161587
  demanda_temp_0.76
## [1] 135660
  demanda_temp_0.78
## [1] 52930
  demanda_temp_0.80
## [1] 112897
  demanda_temp_0.82
## [1] 72354
  demanda_temp_0.84
## [1] 44963
  demanda_temp_0.86
## [1] 42307
  demanda_temp_0.88
## [1] 19274
  demanda_temp_0.90
## [1] 27836
  demanda_temp_0.92
## [1] 15681
  demanda_temp_0.94
## [1] 3690
  demanda_temp_0.96
## [1] 4392
  demanda_temp_0.98
## [1] 539
  demanda_temp_1
## [1] 294

Respuesta , la demanda baja despues de .70 Celcious

5. ¿A que humedad baja la demanda?

  humedad_0.00 <- sum(bike_df[ bike_df$temp == 0.00 ,  ]$cnt)
  humedad_0.01 <- sum(bike_df[ bike_df$temp == 0.01 ,  ]$cnt)
  humedad_0.02 <- sum(bike_df[ bike_df$temp == 0.02 ,  ]$cnt)
  humedad_0.03 <- sum(bike_df[ bike_df$temp == 0.03 ,  ]$cnt)
  humedad_0.04 <- sum(bike_df[ bike_df$temp == 0.04 ,  ]$cnt)
  humedad_0.05 <- sum(bike_df[ bike_df$temp == 0.05 ,  ]$cnt)
  humedad_0.06 <- sum(bike_df[ bike_df$temp == 0.06 ,  ]$cnt)
  humedad_0.07 <- sum(bike_df[ bike_df$temp == 0.07 ,  ]$cnt)
  humedad_0.08 <- sum(bike_df[ bike_df$temp == 0.08 ,  ]$cnt)
  humedad_0.09 <- sum(bike_df[ bike_df$temp == 0.09 ,  ]$cnt)
  
  humedad_0.10 <- sum(bike_df[ bike_df$temp == 0.10 ,  ]$cnt)
  humedad_0.11 <- sum(bike_df[ bike_df$temp == 0.11 ,  ]$cnt)
  humedad_0.12 <- sum(bike_df[ bike_df$temp == 0.12 ,  ]$cnt)
  humedad_0.13 <- sum(bike_df[ bike_df$temp == 0.13 ,  ]$cnt)
  humedad_0.14 <- sum(bike_df[ bike_df$temp == 0.14 ,  ]$cnt)
  humedad_0.15 <- sum(bike_df[ bike_df$temp == 0.15 ,  ]$cnt)
  humedad_0.16 <- sum(bike_df[ bike_df$temp == 0.16 ,  ]$cnt)
  humedad_0.17 <- sum(bike_df[ bike_df$temp == 0.17 ,  ]$cnt)
  humedad_0.18 <- sum(bike_df[ bike_df$temp == 0.18 ,  ]$cnt)
  humedad_0.19 <- sum(bike_df[ bike_df$temp == 0.19 ,  ]$cnt)
  
  humedad_0.20 <- sum(bike_df[ bike_df$temp == 0.20 ,  ]$cnt)
  humedad_0.21 <- sum(bike_df[ bike_df$temp == 0.21 ,  ]$cnt)
  humedad_0.22 <- sum(bike_df[ bike_df$temp == 0.22 ,  ]$cnt)
  humedad_0.23 <- sum(bike_df[ bike_df$temp == 0.23 ,  ]$cnt)
  humedad_0.24 <- sum(bike_df[ bike_df$temp == 0.24 ,  ]$cnt)
  humedad_0.25 <- sum(bike_df[ bike_df$temp == 0.25 ,  ]$cnt)
  humedad_0.26 <- sum(bike_df[ bike_df$temp == 0.26 ,  ]$cnt)
  humedad_0.27 <- sum(bike_df[ bike_df$temp == 0.27 ,  ]$cnt)
  humedad_0.28 <- sum(bike_df[ bike_df$temp == 0.28 ,  ]$cnt)
  humedad_0.29 <- sum(bike_df[ bike_df$temp == 0.29 ,  ]$cnt)
  
  humedad_0.30 <- sum(bike_df[ bike_df$temp == 0.30 ,  ]$cnt)
  humedad_0.31 <- sum(bike_df[ bike_df$temp == 0.31 ,  ]$cnt)
  humedad_0.32 <- sum(bike_df[ bike_df$temp == 0.32 ,  ]$cnt)
  humedad_0.33 <- sum(bike_df[ bike_df$temp == 0.33 ,  ]$cnt)
  humedad_0.34 <- sum(bike_df[ bike_df$temp == 0.34 ,  ]$cnt)
  humedad_0.35 <- sum(bike_df[ bike_df$temp == 0.35 ,  ]$cnt)
  humedad_0.36 <- sum(bike_df[ bike_df$temp == 0.36 ,  ]$cnt)
  humedad_0.37 <- sum(bike_df[ bike_df$temp == 0.37 ,  ]$cnt)
  humedad_0.38 <- sum(bike_df[ bike_df$temp == 0.38 ,  ]$cnt)
  humedad_0.39 <- sum(bike_df[ bike_df$temp == 0.39 ,  ]$cnt)
  
  humedad_0.40 <- sum(bike_df[ bike_df$temp == 0.40 ,  ]$cnt)
  humedad_0.41 <- sum(bike_df[ bike_df$temp == 0.41 ,  ]$cnt)
  humedad_0.42 <- sum(bike_df[ bike_df$temp == 0.42 ,  ]$cnt)
  humedad_0.43 <- sum(bike_df[ bike_df$temp == 0.43 ,  ]$cnt)
  humedad_0.44 <- sum(bike_df[ bike_df$temp == 0.44 ,  ]$cnt)
  humedad_0.45 <- sum(bike_df[ bike_df$temp == 0.45 ,  ]$cnt)
  humedad_0.46 <- sum(bike_df[ bike_df$temp == 0.46 ,  ]$cnt)
  humedad_0.47 <- sum(bike_df[ bike_df$temp == 0.47 ,  ]$cnt)
  humedad_0.48 <- sum(bike_df[ bike_df$temp == 0.48 ,  ]$cnt)
  humedad_0.49 <- sum(bike_df[ bike_df$temp == 0.49 ,  ]$cnt)
  
  humedad_0.50 <- sum(bike_df[ bike_df$temp == 0.50 ,  ]$cnt)
  humedad_0.51 <- sum(bike_df[ bike_df$temp == 0.51 ,  ]$cnt)
  humedad_0.52 <- sum(bike_df[ bike_df$temp == 0.52 ,  ]$cnt)
  humedad_0.53 <- sum(bike_df[ bike_df$temp == 0.53 ,  ]$cnt)
  humedad_0.54 <- sum(bike_df[ bike_df$temp == 0.54 ,  ]$cnt)
  humedad_0.55 <- sum(bike_df[ bike_df$temp == 0.55 ,  ]$cnt)
  humedad_0.56 <- sum(bike_df[ bike_df$temp == 0.56 ,  ]$cnt)
  humedad_0.57 <- sum(bike_df[ bike_df$temp == 0.57 ,  ]$cnt)
  humedad_0.58 <- sum(bike_df[ bike_df$temp == 0.58 ,  ]$cnt)
  humedad_0.59 <- sum(bike_df[ bike_df$temp == 0.59 ,  ]$cnt)

  humedad_0.60 <- sum(bike_df[ bike_df$temp == 0.60 ,  ]$cnt)
  humedad_0.61 <- sum(bike_df[ bike_df$temp == 0.61 ,  ]$cnt)
  humedad_0.62 <- sum(bike_df[ bike_df$temp == 0.62 ,  ]$cnt)
  humedad_0.63 <- sum(bike_df[ bike_df$temp == 0.63 ,  ]$cnt)
  humedad_0.64 <- sum(bike_df[ bike_df$temp == 0.64 ,  ]$cnt)
  humedad_0.65 <- sum(bike_df[ bike_df$temp == 0.65 ,  ]$cnt)
  humedad_0.66 <- sum(bike_df[ bike_df$temp == 0.66 ,  ]$cnt)
  humedad_0.67 <- sum(bike_df[ bike_df$temp == 0.67 ,  ]$cnt)
  humedad_0.68 <- sum(bike_df[ bike_df$temp == 0.68 ,  ]$cnt)
  humedad_0.69 <- sum(bike_df[ bike_df$temp == 0.69 ,  ]$cnt)
  
  humedad_0.70 <- sum(bike_df[ bike_df$temp == 0.70 ,  ]$cnt)
  humedad_0.71 <- sum(bike_df[ bike_df$temp == 0.71 ,  ]$cnt)
  humedad_0.72 <- sum(bike_df[ bike_df$temp == 0.72 ,  ]$cnt)
  humedad_0.73 <- sum(bike_df[ bike_df$temp == 0.73 ,  ]$cnt)
  humedad_0.74 <- sum(bike_df[ bike_df$temp == 0.74 ,  ]$cnt)
  humedad_0.75 <- sum(bike_df[ bike_df$temp == 0.75 ,  ]$cnt)
  humedad_0.76 <- sum(bike_df[ bike_df$temp == 0.76 ,  ]$cnt)
  humedad_0.77 <- sum(bike_df[ bike_df$temp == 0.77 ,  ]$cnt)
  humedad_0.78 <- sum(bike_df[ bike_df$temp == 0.78 ,  ]$cnt)
  humedad_0.79 <- sum(bike_df[ bike_df$temp == 0.79 ,  ]$cnt)
  
  humedad_0.80 <- sum(bike_df[ bike_df$temp == 0.80 ,  ]$cnt)
  humedad_0.81 <- sum(bike_df[ bike_df$temp == 0.81 ,  ]$cnt)
  humedad_0.82 <- sum(bike_df[ bike_df$temp == 0.82 ,  ]$cnt)
  humedad_0.83 <- sum(bike_df[ bike_df$temp == 0.83 ,  ]$cnt)
  humedad_0.84 <- sum(bike_df[ bike_df$temp == 0.84 ,  ]$cnt)
  humedad_0.85 <- sum(bike_df[ bike_df$temp == 0.85 ,  ]$cnt)
  humedad_0.86 <- sum(bike_df[ bike_df$temp == 0.86 ,  ]$cnt)
  humedad_0.87 <- sum(bike_df[ bike_df$temp == 0.87 ,  ]$cnt)
  humedad_0.88 <- sum(bike_df[ bike_df$temp == 0.88 ,  ]$cnt)
  humedad_0.89 <- sum(bike_df[ bike_df$temp == 0.89 ,  ]$cnt)
  
  humedad_0.90 <- sum(bike_df[ bike_df$temp == 0.90 ,  ]$cnt)
  humedad_0.91 <- sum(bike_df[ bike_df$temp == 0.91 ,  ]$cnt)
  humedad_0.92 <- sum(bike_df[ bike_df$temp == 0.92 ,  ]$cnt)
  humedad_0.93 <- sum(bike_df[ bike_df$temp == 0.93 ,  ]$cnt)
  humedad_0.94 <- sum(bike_df[ bike_df$temp == 0.94 ,  ]$cnt)
  humedad_0.95 <- sum(bike_df[ bike_df$temp == 0.95 ,  ]$cnt)
  humedad_0.96 <- sum(bike_df[ bike_df$temp == 0.96 ,  ]$cnt)
  humedad_0.97 <- sum(bike_df[ bike_df$temp == 0.97 ,  ]$cnt)
  humedad_0.98 <- sum(bike_df[ bike_df$temp == 0.98 ,  ]$cnt)
  humedad_0.99 <- sum(bike_df[ bike_df$temp == 0.99 ,  ]$cnt)
  
  humedad_1 <- sum(bike_df[ bike_df$temp == 1.00 ,  ]$cnt)
  humedad_0.01
## [1] 0
  humedad_0.02
## [1] 712
  humedad_0.03
## [1] 0
  humedad_0.04
## [1] 570
  humedad_0.05
## [1] 0
  humedad_0.06
## [1] 672
  humedad_0.07
## [1] 0
  humedad_0.08  
## [1] 480
  humedad_0.09
## [1] 0
  humedad_0.10
## [1] 2514
  humedad_0.11
## [1] 0
  humedad_0.12
## [1] 4440
  humedad_0.13
## [1] 0
  humedad_0.14
## [1] 7605
  humedad_0.15
## [1] 0
  humedad_0.16
## [1] 15083
  humedad_0.17
## [1] 0
  humedad_0.18
## [1] 9318
  humedad_0.19
## [1] 0
  humedad_0.20
## [1] 28230
  humedad_0.21
## [1] 0
  humedad_0.22
## [1] 29434
  humedad_0.23
## [1] 0
  humedad_0.24
## [1] 41843
  humedad_0.25
## [1] 0
  humedad_0.26
## [1] 49170
  humedad_0.27
## [1] 0
  humedad_0.28
## [1] 32132
  humedad_0.29
## [1] 0
  humedad_0.30
## [1] 74303
  humedad_0.31
## [1] 0
  humedad_0.32
## [1] 82015
  humedad_0.33
## [1] 0
  humedad_0.34
## [1] 87274
  humedad_0.35
## [1] 0
  humedad_0.36
## [1] 99202
  humedad_0.37
## [1] 0
  humedad_0.38
## [1] 61087
  humedad_0.39
## [1] 0
  humedad_0.40
## [1] 102809
  humedad_0.41
## [1] 0
  humedad_0.42
## [1] 96087
  humedad_0.43
## [1] 0
  humedad_0.44
## [1] 80566
  humedad_0.45
## [1] 0
  humedad_0.46
## [1] 91065
  humedad_0.47
## [1] 0
  humedad_0.48
## [1] 54845
  humedad_0.49
## [1] 0
  humedad_0.50
## [1] 105366
  humedad_0.51
## [1] 0
  humedad_0.52
## [1] 112850
  humedad_0.53
## [1] 0
  humedad_0.54
## [1] 113962
  humedad_0.55
## [1] 0
  humedad_0.56
## [1] 123756
  humedad_0.57
## [1] 0
  humedad_0.58
## [1] 67730
  humedad_0.59
## [1] 0
  humedad_0.60
## [1] 149905
  humedad_0.61
## [1] 0
  humedad_0.62
## [1] 148185
  humedad_0.63
## [1] 0
  humedad_0.64
## [1] 154985
  humedad_0.65
## [1] 0
  humedad_0.66
## [1] 156204
  humedad_0.67
## [1] 0
  humedad_0.68
## [1] 73129
  humedad_0.69
## [1] 0
  humedad_0.70
## [1] 177298
  humedad_0.71
## [1] 0
  humedad_0.72
## [1] 163449
  humedad_0.73
## [1] 0
  humedad_0.74
## [1] 161587
  humedad_0.75
## [1] 0
  humedad_0.76
## [1] 135660
  humedad_0.77
## [1] 0
  humedad_0.78
## [1] 52930
  humedad_0.79
## [1] 0
  humedad_0.80
## [1] 112897
  humedad_0.81
## [1] 0
  humedad_0.82
## [1] 72354
  humedad_0.83
## [1] 0
  humedad_0.84
## [1] 44963
  humedad_0.85
## [1] 0
  humedad_0.86
## [1] 42307
  humedad_0.87
## [1] 0
  humedad_0.88
## [1] 19274
  humedad_0.89
## [1] 0
  humedad_0.90
## [1] 27836
  humedad_0.91
## [1] 0
  humedad_0.92
## [1] 15681
  humedad_0.93
## [1] 0
  humedad_0.94
## [1] 3690
  humedad_0.95
## [1] 0
  humedad_0.96
## [1] 4392
  humedad_0.97
## [1] 0
  humedad_0.98
## [1] 539
  humedad_0.99
## [1] 0
  humedad_1
## [1] 294

Respuesta : Con una humedad > 0.56 la demanda tiende a bajar, excluimos los valores atipicos.

6. ¿Que condiciones serian ideales para nuestra demanda?

Las condiciones ideales se cumplen basado en las siguientes condiciones:

  • Mes debe ser Agosto
  • En un rango entre 17:00 a 17:59 horas
  • En la temporada “fall”
  • Con una temperatura de 0.70 celcious
  • Con humedad de 0.56