# Sexo del entrevistado
load("wvs.rdata")
wvs$sex <- wvs$X001
wvs$sex[wvs$sex < 1] <- NA
wvs$sex <- factor(wvs$sex)
levels(wvs$sex) <- c("Masculino", "Femenino")
table(wvs$sex)
##
## Masculino Femenino
## 160465 172298
# Estado civil
table(wvs$X007)
##
## -5 -4 -2 -1 1 2 3 4 5 6
## 31 3999 526 254 191841 20417 11099 5930 19926 83343
## 7
## 125
library(car)
wvs$ecivil <- recode(wvs$X007, "1:2 = 2; 3:4=3; 5=3; 6=1; 7=3; else = NA")
wvs$ecivil <- factor(wvs$ecivil)
levels(wvs$ecivil) <- c("Soltero", "Casado/Conv.", "Div./Sep./Viud.")
table(wvs$ecivil)
##
## Soltero Casado/Conv. Div./Sep./Viud.
## 83343 212258 37080
# Grupos de edad
table(wvs$X003R2)
##
## -5 -4 -3 -2 -1 1 2 3 13 14
## 124 3437 23 440 183 101279 135649 96342 2 12
wvs$gedad <- recode(wvs$X003R2, "lo:0= NA; 4:hi=NA")
wvs$gedad <- factor(wvs$gedad)
levels(wvs$gedad) <- c("15-29", "30-49", "50+")
table(wvs$gedad)
##
## 15-29 30-49 50+
## 101279 135649 96342
# Clase social subjetiva
table(wvs$X045)
##
## -5 -4 -3 -2 -1 1 2 3 4 5
## 239 45770 3 2584 8101 5204 54140 105332 78649 37469
wvs$classoc <- recode(wvs$X045, "1:2=1; 3=2; 4=3; 5=4; else=NA")
wvs$classoc <- factor(wvs$classoc)
levels(wvs$classoc) <- c("Alta/Media alta", "Media baja", "Trabajadora", "Baja")
table(wvs$classoc)
##
## Alta/Media alta Media baja Trabajadora Baja
## 59344 105332 78649 37469
# Satisfacción con la vida
wvs$satvid <- wvs$A170
wvs$satvid[wvs$satvid < 0] <- NA
table(wvs$satvid)
##
## 1 2 3 4 5 6 7 8 9 10
## 14566 10067 16817 19263 47067 36679 49091 60399 33873 44275
# Felicidad
table(wvs$oleada, wvs$A008)
##
## -5 -4 -2 -1 1 2 3 4
## 1981-1984 0 970 230 0 2155 5497 1274 181
## 1990-1994 0 0 60 529 5304 12333 5527 805
## 1995-1998 0 3029 30 877 17531 37193 14570 2379
## 1999-2004 0 0 54 517 17024 28599 8788 1788
## 2005-2009 21 0 269 588 23326 44742 12593 2436
## 2010-2014 4 0 237 491 27906 44051 11041 2542
wvs$feliz1 <- wvs$A008
wvs$feliz1[wvs$feliz1 < 0] <- NA
wvs$feliz2 <- recode(wvs$feliz1, "1:2=1; 3:4=2")
wvs$feliz1 <- factor(wvs$feliz1)
wvs$feliz2 <- factor(wvs$feliz2)
levels(wvs$feliz1) <- c("Muy feliz", "Bastante feliz", "Poco feliz", "Nada Feliz")
levels(wvs$feliz2) <- c("Felices", "Poco/Nada felices")
table(wvs$feliz1)
##
## Muy feliz Bastante feliz Poco feliz Nada Feliz
## 93246 172415 53793 10131
table(wvs$feliz2)
##
## Felices Poco/Nada felices
## 265661 63924
# Satisfacción Finanzas del Hogar
table(wvs$C006)
##
## -5 -4 -2 -1 1 2 3 4 5 6 7 8
## 54 8346 1250 2640 29228 16102 26304 26950 54567 40665 43761 41523
## 9 10
## 19322 26779
wvs$satfinanz <- wvs$C006
wvs$satfinanz[wvs$satfinanz < 0] <- NA
table(wvs$satfinanz)
##
## 1 2 3 4 5 6 7 8 9 10
## 29228 16102 26304 26950 54567 40665 43761 41523 19322 26779
wvs.peru <- subset(wvs, S003==604)
wvs.peru$oleada <- factor(wvs.peru$oleada)
table(wvs.peru$oleada, wvs.peru$feliz2)
##
## Felices Poco/Nada felices
## 1995-1998 761 440
## 1999-2004 992 506
## 2005-2009 1016 477
## 2010-2014 918 284
# los datos se exportan a excel y se elabora en gráfico en ese programa
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
df1 <- summarySE(data = wvs.peru, measurevar = "satvid",
groupvars = "oleada", na.rm = T)
df1
## oleada N satvid sd se ci
## 1 1995-1998 1191 6.361881 2.434181 0.07053374 0.1383843
## 2 1999-2004 1490 6.440268 2.396155 0.06207573 0.1217652
## 3 2005-2009 1490 7.024832 2.229613 0.05776123 0.1133020
## 4 2010-2014 1206 7.134328 2.184487 0.06290364 0.1234128
library(ggplot2)
ggplot(data = df1, aes(x=oleada, y=satvid)) + geom_point() +
geom_errorbar(aes(ymin=satvid-ci, ymax=satvid+ci), width=0.2) +
ylim(2,9) + xlab("Oleada") + ylab("Nivel de Satisfacción con la Vida") +
ggtitle("Peru EMV: Nivel de satisfacción con la vida según oleada \n Media e Intervalo de Confianza al 95%") +
theme_bw()
peru12 <- subset(wvs.peru, oleada=="2010-2014")
df2 <- summarySE(data = peru12, measurevar = "satvid", groupvars = "ecivil", na.rm = T)
df2
## ecivil N satvid sd se ci
## 1 Soltero 379 7.324538 2.116377 0.10871099 0.2137540
## 2 Casado/Conv. 688 7.103198 2.208121 0.08418382 0.1652884
## 3 Div./Sep./Viud. 139 6.769784 2.211028 0.18753696 0.3708175
ggplot(data = df2, aes(x=ecivil, y=satvid)) + geom_point() +
geom_errorbar(aes(ymin=satvid-ci, ymax=satvid+ci), width=0.2) +
ylim(2,9) + xlab("Estado Civil") + ylab("Nivel de Satisfacción con la Vida") +
ggtitle("Peru EMV 2012: Nivel de satisfacción con la vida según Estado Civil \n Media e Intervalo de Confianza al 95%") +
theme_bw()
df3.a <- summarySE(data = wvs.peru, measurevar = "satfinanz",
groupvars = "oleada", na.rm = T)
df3.a
## oleada N satfinanz sd se ci
## 1 1995-1998 1180 5.116949 2.515745 0.07323618 0.1436878
## 2 1999-2004 1486 5.105653 2.636498 0.06839400 0.1341591
## 3 2005-2009 1490 5.683221 2.463771 0.06382741 0.1252012
## 4 2010-2014 1208 6.017384 2.346644 0.06751710 0.1324639
ggplot(data = df3.a, aes(y=satfinanz, x=oleada)) + geom_point() +
geom_errorbar(aes(ymin=satfinanz-ci, ymax=satfinanz+ci), width=0.2) +
ylim(2,9) + xlab("Oleada") + ylab("Nivel de Satisfacción Financiera") +
ggtitle("Peru EMV: Nivel de satisfacción Financiera según oleada \n Media e Intervalo de Confianza al 95%") +
theme_bw()
df5 <- summarySE(data = peru12, measurevar = "satfinanz",
groupvars = "feliz1", na.rm=T)
df5
## feliz1 N satfinanz sd se ci
## 1 Muy feliz 423 6.295508 2.401649 0.1167722 0.2295275
## 2 Bastante feliz 494 6.325911 2.175154 0.0978648 0.1922835
## 3 Poco feliz 273 5.113553 2.258546 0.1366934 0.2691116
## 4 Nada Feliz 10 4.800000 3.190263 1.0088497 2.2821766
## 5 <NA> 8 4.625000 3.113909 1.1009330 2.6032930
ggplot(data = na.omit(df5), aes(x=feliz1, y=satfinanz)) + geom_point() +
geom_errorbar(aes(ymin=satfinanz-ci, ymax=satfinanz+ci), width=0.2) +
ylim(2,9) + xlab("Nivel de Felicidad") + ylab("Nivel de Satisfacción Financiera") +
ggtitle("Peru EMV 2012: Nivel de satisfacción Financiera según Nivel de Felicidad \n Media e Intervalo de Confianza al 95%") +
theme_bw()
Pasos: a) Generar los grupos para comparar los casos; b) mostrar los estadísticos descriptivos; c) Calcular el estadístico de la prueba de t
peru06_12 <- subset(wvs.peru, oleada=="2005-2009" | oleada == "2010-2014")
summarySE(peru06_12, measurevar = "satvid", groupvars = "oleada", na.rm=T)
## oleada N satvid sd se ci
## 1 2005-2009 1490 7.024832 2.229613 0.05776123 0.1133020
## 2 2010-2014 1206 7.134328 2.184487 0.06290364 0.1234128
t.test(peru06_12$satvid~peru06_12$oleada)
##
## Welch Two Sample t-test
##
## data: peru06_12$satvid by peru06_12$oleada
## t = -1.2822, df = 2598.6, p-value = 0.1999
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.27695584 0.05796355
## sample estimates:
## mean in group 2005-2009 mean in group 2010-2014
## 7.024832 7.134328
data2pais <- subset(wvs, oleada=="2010-2014" & (S003==604 | S003==218))
table(data2pais$oleada, data2pais$S003)
##
## 218 604
## 1981-1984 0 0
## 1990-1994 0 0
## 1995-1998 0 0
## 1999-2004 0 0
## 2005-2009 0 0
## 2010-2014 1202 1210
summarySE(data2pais, measurevar = "satvid", groupvars = "S003", na.rm=T)
## S003 N satvid sd se ci
## 1 218 1202 7.918469 1.742358 0.05025568 0.0985987
## 2 604 1206 7.134328 2.184487 0.06290364 0.1234128
t.test(data2pais$satvid~data2pais$S003)
##
## Welch Two Sample t-test
##
## data: data2pais$satvid by data2pais$S003
## t = 9.7392, df = 2295.8, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.6262531 0.9420286
## sample estimates:
## mean in group 218 mean in group 604
## 7.918469 7.134328
peru12$ecivil2 <- recode(peru12$ecivil, "'Div./Sep./Viud.'=NA")
summarySE(peru12, measurevar = "satvid", groupvars = "ecivil2", na.rm=T)
## ecivil2 N satvid sd se ci
## 1 Casado/Conv. 688 7.103198 2.208121 0.08418382 0.1652884
## 2 Soltero 379 7.324538 2.116377 0.10871099 0.2137540
## 3 <NA> 139 6.769784 2.211028 0.18753696 0.3708175
t.test(peru12$satvid~peru12$ecivil2)
##
## Welch Two Sample t-test
##
## data: peru12$satvid by peru12$ecivil2
## t = -1.6098, df = 807.51, p-value = 0.1078
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.49123122 0.04855005
## sample estimates:
## mean in group Casado/Conv. mean in group Soltero
## 7.103198 7.324538
peru12$gedad2 <- recode(peru12$gedad, "'30-49'=NA")
summarySE(peru12, measurevar = "satfinanz", groupvars = "gedad2", na.rm=T)
## gedad2 N satfinanz sd se ci
## 1 15-29 410 6.368293 2.298819 0.1135306 0.2231762
## 2 50+ 305 5.600000 2.421939 0.1386798 0.2728939
## 3 <NA> 493 5.983773 2.297874 0.1034910 0.2033389
t.test(peru12$satfinanz~peru12$gedad2)
##
## Welch Two Sample t-test
##
## data: peru12$satfinanz by peru12$gedad2
## t = 4.2868, df = 635.77, p-value = 2.094e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.4163499 1.1202355
## sample estimates:
## mean in group 15-29 mean in group 50+
## 6.368293 5.600000
peru12$classoc2 <- recode(peru12$classoc, "'Alta/Media alta'=NA; 'Baja'=NA")
summarySE(peru12, measurevar = "satfinanz", groupvars = "classoc2", na.rm=T)
## classoc2 N satfinanz sd se ci
## 1 Media baja 416 6.144231 2.178397 0.1068047 0.2099456
## 2 Trabajadora 384 5.677083 2.387937 0.1218589 0.2395961
## 3 <NA> 408 6.208333 2.442102 0.1209021 0.2376704
t.test(peru12$satfinanz~peru12$classoc2)
##
## Welch Two Sample t-test
##
## data: peru12$satfinanz by peru12$classoc2
## t = 2.8829, df = 775.24, p-value = 0.004049
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1490591 0.7852358
## sample estimates:
## mean in group Media baja mean in group Trabajadora
## 6.144231 5.677083
summarySE(peru12, measurevar = "satfinanz", groupvars = "feliz2", na.rm=T)
## feliz2 N satfinanz sd se ci
## 1 Felices 917 6.311887 2.281213 0.07533227 0.1478439
## 2 Poco/Nada felices 283 5.102473 2.290923 0.13618122 0.2680607
## 3 <NA> 8 4.625000 3.113909 1.10093305 2.6032930
t.test(peru12$satfinanz~peru12$feliz2)
##
## Welch Two Sample t-test
##
## data: peru12$satfinanz by peru12$feliz2
## t = 7.7711, df = 467.52, p-value = 4.983e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.9035948 1.5152313
## sample estimates:
## mean in group Felices mean in group Poco/Nada felices
## 6.311887 5.102473
Para el año 2012, vamos a comparar si los niveles de satisfacción con la vida son diferentes de los niveles de satisfacción con las finanzas
summarySE(peru12, measurevar = "satvid", na.rm = T)
## .id N satvid sd se ci
## 1 <NA> 1206 7.134328 2.184487 0.06290364 0.1234128
summarySE(peru12, measurevar = "satfinanz", na.rm = T)
## .id N satfinanz sd se ci
## 1 <NA> 1208 6.017384 2.346644 0.0675171 0.1324639
t.test(peru12$satvid, peru12$satfinanz, paired = T)
##
## Paired t-test
##
## data: peru12$satvid and peru12$satfinanz
## t = 14.693, df = 1203, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.964344 1.261570
## sample estimates:
## mean of the differences
## 1.112957
Para el año 2012, en el caso de las personas que se consideran de clase Alta/Media Alta, ¿tienen una mejor evaluación de su satisfacción con la vida que su satisfacción con las finanzas?
peru12.alta <- subset(peru12, classoc=="Alta/Media alta")
summarySE(peru12.alta, measurevar = "satvid", na.rm = T)
## .id N satvid sd se ci
## 1 <NA> 247 7.554656 1.94958 0.1240488 0.2443333
summarySE(peru12.alta, measurevar = "satfinanz", na.rm = T)
## .id N satfinanz sd se ci
## 1 <NA> 248 6.810484 2.251489 0.1429697 0.2815952
t.test(peru12.alta$satvid, peru12.alta$satfinanz, paired = T)
##
## Paired t-test
##
## data: peru12.alta$satvid and peru12.alta$satfinanz
## t = 4.2652, df = 246, p-value = 2.85e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3987501 1.0830313
## sample estimates:
## mean of the differences
## 0.7408907
Se piden las tablas pero los datos se trabajan en Excel
table(wvs.peru$oleada, wvs.peru$feliz2)
##
## Felices Poco/Nada felices
## 1995-1998 761 440
## 1999-2004 992 506
## 2005-2009 1016 477
## 2010-2014 918 284
table(peru12$feliz2, peru12$classoc)
##
## Alta/Media alta Media baja Trabajadora Baja
## Felices 218 323 268 85
## Poco/Nada felices 28 91 115 39
table(data2pais$S003, data2pais$feliz2)
##
## Felices Poco/Nada felices
## 218 1118 84
## 604 918 284