For problems 1 and 2, there is no data. Only t.
What is t?
For these two problems, we are given the characteristics of a t distribution – the degrees of freedom – and a probability. With those two things, we should be able to query R to find the required t values.
par(mfrow=c(1,2))
.x <- seq(-3.745, 3.745, length.out=1000)
plotDistr(.x, dt(.x, df=24), cdf=FALSE, xlab="x",
ylab="Density",
main=paste("t: Degrees of freedom=24"))
plotDistr(.x, pt(.x, df=24), cdf=TRUE, xlab="x",
ylab="Cumulative Probability",
main=paste("t: Degrees of freedom=24"))
abline(v=0, col="red")
abline(h=0.5, col="red")
Here, the two inputs change, we have different degrees of freedom and a different probability.
par(mfrow=c(1,2))
.x <- seq(-3.745, 3.745, length.out=1000)
plotDistr(.x, dt(.x, df=15), cdf=FALSE, xlab="x",
ylab="Density",
main=paste("t: Degrees of freedom=15"))
plotDistr(.x, pt(.x, df=15), cdf=TRUE, xlab="x",
ylab="Cumulative Probability",
main=paste("t: Degrees of freedom=15"))
abline(v=0, col="red")
abline(h=0.5, col="red")