data("AirPassengers")
library(forecast)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: timeDate
## This is forecast 7.3
plot(AirPassengers)

AirPassengers=ts(AirPassengers,frequency=12, start=c(1949,1))
plot.ts(AirPassengers)

library(TTR)
AirPassengerscomponents <- decompose(AirPassengers)
plot(AirPassengerscomponents)

AirPassengerscomponents$seasonal
## Jan Feb Mar Apr May Jun
## 1949 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1950 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1951 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1952 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1953 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1954 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1955 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1956 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1957 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1958 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1959 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## 1960 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
## Jul Aug Sep Oct Nov Dec
## 1949 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1950 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1951 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1952 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1953 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1954 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1955 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1956 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1957 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1958 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1959 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
## 1960 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
AirPassengersseasonallyadjusted <- AirPassengers - AirPassengerscomponents$seasonal
plot(AirPassengersseasonallyadjusted)

fit3 <- HoltWinters(AirPassengersseasonallyadjusted, beta=FALSE, gamma=FALSE)
fit4<- ets(AirPassengers)
forecast(fit3, 3)
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Jan 1961 460.6188 438.5155 482.7222 426.8147 494.4230
## Feb 1961 460.6188 429.3610 491.8767 412.8141 508.4235
## Mar 1961 460.6188 422.3364 498.9013 402.0709 519.1668
plot(forecast(fit3, 3))

forecast(fit4, 3)
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Jan 1961 441.7479 420.9284 462.5675 409.9071 473.5887
## Feb 1961 433.0931 407.5924 458.5938 394.0931 472.0931
## Mar 1961 496.6067 462.3205 530.8930 444.1705 549.0430
plot(forecast(fit4, 3))
