Synopsis

This is the assignment report for week-2. In this assignment, I have worked on five problems assigned as week-2 homework. By working on this assignment I have learned about importing various types of files(.csv, .xlsx etc) into R. For this purpose three data sets have been used namely: 1. Reddit data 2. HUD data 3. Average daily temperatures for Cincinnati

Packages Required

To complete this assignment and run the codes I have used the following packages:

Assignment Problems

1.Download & import the csv file located at: https://bradleyboehmke.github.io/public/data/reddit.csv

## Parsed with column specification:
## cols(
##   id = col_integer(),
##   gender = col_integer(),
##   age.range = col_character(),
##   marital.status = col_character(),
##   employment.status = col_character(),
##   military.service = col_character(),
##   children = col_character(),
##   education = col_character(),
##   country = col_character(),
##   state = col_character(),
##   income.range = col_character(),
##   fav.reddit = col_character(),
##   dog.cat = col_character(),
##   cheese = col_character()
## )
## # A tibble: 6 × 14
##      id gender age.range                           marital.status
##   <int>  <int>     <chr>                                    <chr>
## 1     1      0     25-34                                     <NA>
## 2     2      0     25-34                                     <NA>
## 3     3      1     18-24                                     <NA>
## 4     4      0     25-34                                     <NA>
## 5     5      1     25-34                                     <NA>
## 6     6      0     25-34 Married/civil union/domestic partnership
## # ... with 10 more variables: employment.status <chr>,
## #   military.service <chr>, children <chr>, education <chr>,
## #   country <chr>, state <chr>, income.range <chr>, fav.reddit <chr>,
## #   dog.cat <chr>, cheese <chr>
## Classes 'tbl_df', 'tbl' and 'data.frame':    32754 obs. of  14 variables:
##  $ id               : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ gender           : int  0 0 1 0 1 0 0 0 0 0 ...
##  $ age.range        : chr  "25-34" "25-34" "18-24" "25-34" ...
##  $ marital.status   : chr  NA NA NA NA ...
##  $ employment.status: chr  "Employed full time" "Employed full time" "Freelance" "Freelance" ...
##  $ military.service : chr  NA NA NA NA ...
##  $ children         : chr  "No" "No" "No" "No" ...
##  $ education        : chr  "Bachelor's degree" "Bachelor's degree" "Some college" "Bachelor's degree" ...
##  $ country          : chr  "United States" "United States" "United States" "United States" ...
##  $ state            : chr  "New York" "New York" "Virginia" "New York" ...
##  $ income.range     : chr  "$150,000 or more" "$150,000 or more" "Under $20,000" "$150,000 or more" ...
##  $ fav.reddit       : chr  "getmotivated" "gaming" "snackexchange" "spacedicks" ...
##  $ dog.cat          : chr  NA NA NA NA ...
##  $ cheese           : chr  NA NA NA NA ...
##  - attr(*, "spec")=List of 2
##   ..$ cols   :List of 14
##   .. ..$ id               : list()
##   .. .. ..- attr(*, "class")= chr  "collector_integer" "collector"
##   .. ..$ gender           : list()
##   .. .. ..- attr(*, "class")= chr  "collector_integer" "collector"
##   .. ..$ age.range        : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ marital.status   : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ employment.status: list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ military.service : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ children         : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ education        : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ country          : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ state            : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ income.range     : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ fav.reddit       : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ dog.cat          : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ cheese           : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   ..$ default: list()
##   .. ..- attr(*, "class")= chr  "collector_guess" "collector"
##   ..- attr(*, "class")= chr "col_spec"

2.Import the above csv file directly from the url provided (without downloading to your local hard drive).

## Parsed with column specification:
## cols(
##   id = col_integer(),
##   gender = col_integer(),
##   age.range = col_character(),
##   marital.status = col_character(),
##   employment.status = col_character(),
##   military.service = col_character(),
##   children = col_character(),
##   education = col_character(),
##   country = col_character(),
##   state = col_character(),
##   income.range = col_character(),
##   fav.reddit = col_character(),
##   dog.cat = col_character(),
##   cheese = col_character()
## )
## # A tibble: 6 × 14
##      id gender age.range                           marital.status
##   <int>  <int>     <chr>                                    <chr>
## 1     1      0     25-34                                     <NA>
## 2     2      0     25-34                                     <NA>
## 3     3      1     18-24                                     <NA>
## 4     4      0     25-34                                     <NA>
## 5     5      1     25-34                                     <NA>
## 6     6      0     25-34 Married/civil union/domestic partnership
## # ... with 10 more variables: employment.status <chr>,
## #   military.service <chr>, children <chr>, education <chr>,
## #   country <chr>, state <chr>, income.range <chr>, fav.reddit <chr>,
## #   dog.cat <chr>, cheese <chr>
## Classes 'tbl_df', 'tbl' and 'data.frame':    32754 obs. of  14 variables:
##  $ id               : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ gender           : int  0 0 1 0 1 0 0 0 0 0 ...
##  $ age.range        : chr  "25-34" "25-34" "18-24" "25-34" ...
##  $ marital.status   : chr  NA NA NA NA ...
##  $ employment.status: chr  "Employed full time" "Employed full time" "Freelance" "Freelance" ...
##  $ military.service : chr  NA NA NA NA ...
##  $ children         : chr  "No" "No" "No" "No" ...
##  $ education        : chr  "Bachelor's degree" "Bachelor's degree" "Some college" "Bachelor's degree" ...
##  $ country          : chr  "United States" "United States" "United States" "United States" ...
##  $ state            : chr  "New York" "New York" "Virginia" "New York" ...
##  $ income.range     : chr  "$150,000 or more" "$150,000 or more" "Under $20,000" "$150,000 or more" ...
##  $ fav.reddit       : chr  "getmotivated" "gaming" "snackexchange" "spacedicks" ...
##  $ dog.cat          : chr  NA NA NA NA ...
##  $ cheese           : chr  NA NA NA NA ...
##  - attr(*, "spec")=List of 2
##   ..$ cols   :List of 14
##   .. ..$ id               : list()
##   .. .. ..- attr(*, "class")= chr  "collector_integer" "collector"
##   .. ..$ gender           : list()
##   .. .. ..- attr(*, "class")= chr  "collector_integer" "collector"
##   .. ..$ age.range        : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ marital.status   : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ employment.status: list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ military.service : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ children         : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ education        : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ country          : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ state            : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ income.range     : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ fav.reddit       : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ dog.cat          : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   .. ..$ cheese           : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   ..$ default: list()
##   .. ..- attr(*, "class")= chr  "collector_guess" "collector"
##   ..- attr(*, "class")= chr "col_spec"

3. Download & import the .xlsx file located at: http://www.huduser.gov/portal/datasets/fmr/fmr2017/FY2017_4050_FMR.xlsx

## # A tibble: 6 × 21
##     fips2010   fips2000  fmr2  fmr0  fmr1  fmr3  fmr4 State
##        <chr>      <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2300512300       <NA>  1078   755   851  1454  1579    23
## 2 6099999999       <NA>   677   502   506   987  1038    60
## 3 6999999999       <NA>   666   411   498   961  1158    69
## 4 0100199999 0100199999   822   587   682  1054  1425     1
## 5 0100399999 0100399999   977   807   847  1422  1634     1
## 6 0100599999 0100599999   671   501   505   839   958     1
## # ... with 13 more variables: Metro_code <chr>, areaname <chr>,
## #   county <dbl>, CouSub <chr>, countyname <chr>, county_town_name <chr>,
## #   pop2010 <dbl>, acs_2016_2 <dbl>, state_alpha <chr>, fmr_type <dbl>,
## #   metro <dbl>, FMR_PCT_Change <dbl>, FMR_Dollar_Change <dbl>
## Classes 'tbl_df', 'tbl' and 'data.frame':    4769 obs. of  21 variables:
##  $ fips2010         : chr  "2300512300" "6099999999" "6999999999" "0100199999" ...
##  $ fips2000         : chr  NA NA NA "0100199999" ...
##  $ fmr2             : num  1078 677 666 822 977 ...
##  $ fmr0             : num  755 502 411 587 807 501 665 665 491 464 ...
##  $ fmr1             : num  851 506 498 682 847 505 751 751 494 467 ...
##  $ fmr3             : num  1454 987 961 1054 1422 ...
##  $ fmr4             : num  1579 1038 1158 1425 1634 ...
##  $ State            : num  23 60 69 1 1 1 1 1 1 1 ...
##  $ Metro_code       : chr  "METRO38860MM6400" "NCNTY60999N60999" "NCNTY69999N69999" "METRO33860M33860" ...
##  $ areaname         : chr  "Portland, ME HUD Metro FMR Area" "American Samoa" "Northern Mariana Islands" "Montgomery, AL MSA" ...
##  $ county           : num  NA 999 999 1 3 5 7 9 11 13 ...
##  $ CouSub           : chr  "12300" "99999" "99999" "99999" ...
##  $ countyname       : chr  "Cumberland County" "American Samoa" "Northern Mariana Islands" "Autauga County" ...
##  $ county_town_name : chr  "Chebeague Island town" "American Samoa" "Northern Mariana Islands" "Autauga County" ...
##  $ pop2010          : num  341 55519 53883 54571 182265 ...
##  $ acs_2016_2       : num  1109 653 642 788 873 ...
##  $ state_alpha      : chr  "ME" "AS" "MP" "AL" ...
##  $ fmr_type         : num  40 40 40 40 40 40 40 40 40 40 ...
##  $ metro            : num  1 0 0 1 1 0 1 1 0 0 ...
##  $ FMR_PCT_Change   : num  0.972 1.037 1.037 1.043 1.119 ...
##  $ FMR_Dollar_Change: num  -31 24 24 34 104 35 26 26 52 52 ...

4. Import the above .xlsx file directly from the url provided (without downloading to your local hard drive)

##     fips2010  fips2000 fmr2 fmr0 fmr1 fmr3 fmr4 State       Metro_code
## 1 2300512300        NA 1078  755  851 1454 1579    23 METRO38860MM6400
## 2 6099999999        NA  677  502  506  987 1038    60 NCNTY60999N60999
## 3 6999999999        NA  666  411  498  961 1158    69 NCNTY69999N69999
## 4  100199999 100199999  822  587  682 1054 1425     1 METRO33860M33860
## 5  100399999 100399999  977  807  847 1422 1634     1 METRO19300M19300
## 6  100599999 100599999  671  501  505  839  958     1 NCNTY01005N01005
##                          areaname county CouSub               countyname
## 1 Portland, ME HUD Metro FMR Area     NA  12300        Cumberland County
## 2                  American Samoa    999  99999           American Samoa
## 3        Northern Mariana Islands    999  99999 Northern Mariana Islands
## 4              Montgomery, AL MSA      1  99999           Autauga County
## 5   Daphne-Fairhope-Foley, AL MSA      3  99999           Baldwin County
## 6              Barbour County, AL      5  99999           Barbour County
##           county_town_name pop2010 acs_2016_2 state_alpha fmr_type metro
## 1    Chebeague Island town     341       1109          ME       40     1
## 2           American Samoa   55519        653          AS       40     0
## 3 Northern Mariana Islands   53883        642          MP       40     0
## 4           Autauga County   54571        788          AL       40     1
## 5           Baldwin County  182265        873          AL       40     1
## 6           Barbour County   27457        636          AL       40     0
##   FMR_PCT_Change FMR_Dollar_Change
## 1      0.9720469               -31
## 2      1.0367534                24
## 3      1.0373832                24
## 4      1.0431472                34
## 5      1.1191294               104
## 6      1.0550314                35
## 'data.frame':    4769 obs. of  21 variables:
##  $ fips2010         : num  2.3e+09 6.1e+09 7.0e+09 1.0e+08 1.0e+08 ...
##  $ fips2000         : num  NA NA NA 1e+08 1e+08 ...
##  $ fmr2             : int  1078 677 666 822 977 671 866 866 621 621 ...
##  $ fmr0             : int  755 502 411 587 807 501 665 665 491 464 ...
##  $ fmr1             : int  851 506 498 682 847 505 751 751 494 467 ...
##  $ fmr3             : int  1454 987 961 1054 1422 839 1163 1163 853 849 ...
##  $ fmr4             : int  1579 1038 1158 1425 1634 958 1298 1298 856 1094 ...
##  $ State            : int  23 60 69 1 1 1 1 1 1 1 ...
##  $ Metro_code       : Factor w/ 2598 levels "METRO10180M10180",..: 451 2592 2594 384 160 625 55 55 626 627 ...
##  $ areaname         : Factor w/ 2598 levels " Santa Ana-Anaheim-Irvine, CA HUD Metro FMR Area",..: 1903 52 1723 1633 571 122 186 186 263 271 ...
##  $ county           : int  NA 999 999 1 3 5 7 9 11 13 ...
##  $ CouSub           : int  12300 99999 99999 99999 99999 99999 99999 99999 99999 99999 ...
##  $ countyname       : Factor w/ 1961 levels "A\xf1asco Municipio",..: 462 42 1265 92 99 110 163 178 239 249 ...
##  $ county_town_name : Factor w/ 3175 levels "A\xf1asco Municipio",..: 533 61 2024 136 149 165 254 277 386 401 ...
##  $ pop2010          : int  341 55519 53883 54571 182265 27457 22915 57322 10914 20947 ...
##  $ acs_2016_2       : int  1109 653 642 788 873 636 840 840 569 569 ...
##  $ state_alpha      : Factor w/ 56 levels "AK","AL","AR",..: 24 4 28 2 2 2 2 2 2 2 ...
##  $ fmr_type         : int  40 40 40 40 40 40 40 40 40 40 ...
##  $ metro            : int  1 0 0 1 1 0 1 1 0 0 ...
##  $ FMR_PCT_Change   : num  0.972 1.037 1.037 1.043 1.119 ...
##  $ FMR_Dollar_Change: int  -31 24 24 34 104 35 26 26 52 52 ...

5. Go to this University of Dayton webpage http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm, scroll down to Ohio and import the Cincinnati (OHCINCIN.txt) file

##   V1 V2   V3   V4
## 1  1  1 1995 41.1
## 2  1  2 1995 22.2
## 3  1  3 1995 22.8
## 4  1  4 1995 14.9
## 5  1  5 1995  9.5
## 6  1  6 1995 23.8
## 'data.frame':    7963 obs. of  4 variables:
##  $ V1: int  1 1 1 1 1 1 1 1 1 1 ...
##  $ V2: int  1 2 3 4 5 6 7 8 9 10 ...
##  $ V3: int  1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 ...
##  $ V4: num  41.1 22.2 22.8 14.9 9.5 23.8 31.1 26.9 31.3 31.5 ...